
CIS581: Computer Vision and Computational Photography
Project 4, Part A: Optical Flow
Due: Nov.22, 2017 at 11:59 pm

Instructions
• Optical Flow is a team project. The maximum size of a team is three students. The same team will carry forward

for Part B and Part C. You are not permitted to do this individually.
A team is not allowed to collaborate with another team. Only one individual from each team must submit the code
for this part.
Maximum late days allowed for this part of the project is the average of the late days of the two or three students in
the team. The late days used will be subtracted from the individual tally of late days for each student.

• You must make one submission on Canvas. We recommend that you include a README.txt file in your submis-
sions to help us execute your code correctly.

– Place your code and resulting videos for part A into a folder named "OpticalFlow". Submit this as a zip file
named <Group_Number>_Project4A.zip

• Your submission folder should include the following:

– your .py scripts for the required functions

– .py demo scripts for generating the tracked videos

– any .py files with helper functions for your code, e.g. Harris corners or Shi-Tomasi corners

– the input video/s you use

– the resulting output tracked video/s

– a .pdf document containing an image of the selected features overlaid over the first video frame; on top of
the first frame, plot the points which have moved out of frame at some point along the sequence; additional
features of implementation and references to third-party code

• This handout provides instructions for the code in Python. You are not permitted to use MATLAB for this project.

• Feel free to create your own functions as and when needed to modularize the code. For Python, add all functions in
a helper.py file and import the file in all the required scripts.

• Start early! If you get stuck, please post your questions on Piazza or come to office hours!

• Follow the submission guidelines and the conventions strictly! The grading scripts will break if the guidelines
aren’t followed.

1 Optical Flow
In this part of the project, you will be tracking an object (face/s) in a video. There are two essential components to this:
feature detection and feature tracking. Please try to read the following papers before progressing ahead:

• Detection and Tracking of Point Features by Carlo Tomasi and Takeo Kanade

• Derivation of Kanade-Lucas-Tomasi Tracking Equation by Stan Birchfield

• Good Features to Track by Jianbo Shi and Carlos Tomasi

http://canvas.upenn.edu/courses/1377218
http://piazza.com/upenn/fall2017/cis581
https://cecas.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf
https://cecas.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf
http://ieeexplore.ieee.org/document/323794/


1.1 Detect a Face
In this section, you must detect a face/s in the video by drawing a rectangular bounding box around it. You can either
manually draw a bounding box around the face/s or use Face Recognition and Detection function with OpenCV to auto-
mate the process. Please remember that you should detect the face only once i.e. in the first frame of the video. If you are
unable to find a ’good’ face in the first frame, move on to the next frame.
Complete the following function:

[bbox]=detectFace(img)

• (INPUT) img: H×W ×3 matrix representing the first frame of the video

• (OUTPUT) bbox: F × 4× 2 matrix representing the four corners of the bounding box where F is the number of
detected faces

1.2 Feature Detection
In this section, you will identify features within the bounding box for each face using Harris corners or Shi-Tomasi
features. We recommend you to use corner_harris or corner_shi_tomasi in Python. Good features to track are the ones
whose motion can be estimated reliably. You can perform some kind of thresholding or local maxima suppression if the
number of features obtained are too large.
Complete the following function:

[x,y]=getFeatures(img,bbox)

• (INPUT) img: H×W matrix representing the grayscale input image

• (INPUT) bbox: F × 4× 2 matrix representing the four corners of the bounding box where F is the number of
detected faces

• (OUTPUT) x: N×F matrix representing the N row coordinates of the features across F faces

• (OUTPUT) y: N×F matrix representing the N column coordinates of the features across F faces

Here, N is the maximum number of features across all the bounding boxes. You can fill in the missing rows with either 0
or -1 or any other number that you prefer.

1.3 Feature Tracking
In this section, you will apply the Kanade-Lucas-Tomasi tracking procedure to track the features you found. This involves
computing the optical flow between successive video frames and moving the selected features as well as the bounding
box from the first frame along the flow field.

The first assumption that the KLT tracker makes is the brightness constancy. A point should have the same intensity
after translation in the next frame (where I is the image function):

I(x,y, t) = I(x+u,y+ v, t +1) (1)

Take the Taylor expansion of I(x+u,y+v, t+1), where Ix, Iy are the x,y gradients of the image I(x,y, t), computed at each
element of W (for example, a 10×10 pixel window) at time t and It is the temporal gradient:

I(x+u,y+ v, t +1)≈ I(x,y, t)+ Ix ·u+ Iy · v+ It ·1 (2)

Hence,
I(x+u,y+ v, t +1)− I(x,y, t)≈ Ix ·u+ Iy · v+ It ·1 (3)

By equation (1), we have:

0≈ ∇I ·
[

u
v

]
+ It (4)

https://docs.opencv.org/3.0-beta/modules/face/doc/facerec/facerec_tutorial.html
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.corner_harris
http://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.corner_shi_tomasi


This is a constraint where we have two unknowns (u,v). We get more by assuming that the nearby pixels at points
pi, i ∈ [1,100] (W as mentioned above) move with the same u and v:

0 = It(pi)+∇I(pi) ·
[

u
v

]
(5)

leading to, 
Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(p100) Iy(p100)


[

u
v

]
=−


It(p1)
It(p2)

...
It(p100)

 (6)

You can solve this overconstrained linear system via least-squares (Ax = b): (AT A)x = AT b

Giving rise to:[
Ix(p1)Ix(p1)+ . . .+ Ix(p100)Ix(p100) Ix(p1)Iy(p1)+ . . .+ Ix(p100)Iy(p100)
Ix(p1)Iy(p1)+ . . .+ Ix(p100)Iy(p100) Iy(p1)Iy(p1)+ . . .+ Iy(p100)Iy(p100)

][
u
v

]
=−

[
Ix(p1)It(p1)+ . . .+ Ix(p100)It(p100)
Iy(p1)It(p1)+ . . .+ Iy(p100)It(p100)

]
(7)

and culminating in: [
∑ IxIx ∑ IxIy

∑ IxIy ∑ IyIy

][
u
v

]
=−

[
∑ IxIt
∑ IyIt

]
(8)

This gives rise to two equations with two unknowns for each pixel. You will solve for u,v by inverting the 2×2 matrix on
the left-hand side and multiplying it by the vector on the right-hand side. Once you have the per-pixel optical flow, you
can track a feature through the flow by looking up its displacement in the frame and adding that to its position to get the
position for the next frame.

Use scipy.interpolate.interp2d and numpy.meshgrid for computing Ix, Iy, I(x+ u,y+ v, t + 1) when x,y,u,v are not inte-
gers and for computing indices respectively.

Features will move out of image frame over the course of the sequence. Discard any features if their predicted trans-
lation lies outside the image frame.

In the function below, compute the new X ,Y locations for all the detected starting feature locations within a certain
bounding box.
Complete the following function:

[newXs, newYs] = estimateAllTranslation(startXs,startYs,img1,img2)

• (INPUT) startXs: N×F matrix representing the starting X coordinates of all the features in the first frame for
all the bounding boxes

• (INPUT) startYs: N×F matrix representing the starting Y coordinates of all the features in the first frame for
all the bounding boxes

• (INPUT) img1: H×W ×3 matrix representing the first image frame

• (INPUT) img2: H×W ×3 matrix representing the second image frame

• (OUTPUT) newXs: N×F matrix representing the new X coordinates of all the features in all the bounding boxes

• (OUTPUT) newYs: N×F matrix representing the new Y coordinates of all the features in all the bounding boxes

Precompute the gradients Ix, Iy and then estimate the translation for each feature independently in the following function:

[newX, newY] = estimateFeatureTranslation(startX, startY, Ix, Iy, img1, img2)

• (INPUT) startX: Represents the starting X coordinate for a single feature in the first frame

• (INPUT) startY: Represents the starting Y coordinate for a single feature in the first frame

https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.interpolate.interp2d.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.meshgrid.html


• (INPUT) Ix: H×W matrix representing the gradient along the X-direction

• (INPUT) Iy: H×W matrix representing the gradient along the Y-direction

• (INPUT) img1: H×W ×3 matrix representing the first image frame

• (INPUT) img2: H×W ×3 matrix representing the second image frame

• (OUTPUT) newX: Represents the new X coordinate for a single feature in the second frame

• (OUTPUT) newY: Represents the new Y coordinate for a single feature in the second frame

In the above function, for a single X ,Y location, use the gradients Ix, Iy, and images img1, img2 to compute the new
location. It may be necessary to interpolate Ix, Iy, img1, img2 if the corresponding locations are not integers.

For transforming the four corners of the bounding box from one frame to another, please feel free to use skimage.transform.SimilarityTransform.
Complete the following function:

[Xs, Ys, newbbox] = applyGeometricTransformation(startXs, startYs, newXs, newYs, bbox)

• (INPUT) startXs: N×F matrix representing the starting X coordinates of all the features in the first frame for
all the bounding boxes

• (INPUT) startYs: N×F matrix representing the starting Y coordinates of all the features in the first frame for
all the bounding boxes

• (INPUT) newXs: N×F matrix representing the second X coordinates of all the features in the first frame for all
the bounding boxes

• (INPUT) newYs: N×F matrix representing the second Y coordinates of all the features in the first frame for all
the bounding boxes

• (INPUT) bbox: F×4×2 matrix representing the four new corners of the bounding box where F is the number of
detected faces

• (OUTPUT) Xs: N1×F matrix representing the X coordinates of the remaining features in all the bounding boxes
after eliminating outliers

• (OUTPUT) Ys: N1×F matrix representing the Y coordinates of the remaining features in all the bounding boxes
after eliminating outliers

• (OUTPUT) newbbox: F×4×2 the bounding box position after geometric transformation

In the above function, you should eliminate feature points if the distance from a point to the projection of its corresponding
point is greater than 4. You can play around with this value.

Please do note that your code should generalize to detecting and tracking multiple faces in a video.

1.4 Face Tracking
Once, you have completed all the above functions, combine them in the follow function:

[trackedVideo]=faceTracking(rawVideo)

• (INPUT) rawVideo: The input video containing one or more faces

• (OUTPUT) trackedVideo: The generated output video showing all the tracked features (please do try to show
the trajectories for all the features) in the face as well as the bounding boxes

http://scikit-image.org/docs/0.13.x/api/skimage.transform.html#skimage.transform.SimilarityTransform


2 Extra Credits:
The following tasks are for extra credit. Implementing any or all of them are optional.

• Add iterative refinement to your KLT tracker

• Integrate a pyramid into your KLT tracker and demonstrate improvement on sequences with large frame-to-frame
displacements.
Refer to Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm by Jean-Yves
Bouguet

• Correct for drift using the initial local image patches

3 Additional Tips and Information:
We will be releasing multiple videos with varying difficult levels (e.g. easy, medium and difficult) to test the robustness
of your tracking. Hence, please do try to make your codes general.
You might need to have to incorporate some of the extra credit features in order to decently track the faces in the medium
and difficult datasets.

• For videos containing fast motion or large displacements, you might need to create a pyramidal KLT tracker to
estimate displacements at different resolutions

• If you lose are losing features considerably or rapidly, you might need to perform feature detection every 10-15
frames.

• If you lose tracking at some point in the video, you could reinitialize the tracking by performing face detection
again.

• If the videos have ’crowd faces’ or faces in the background which are smaller in size compared to the faces in the
foreground, please feel free to ignore them.

http://robots.stanford.edu/cs223b04/algo_tracking.pdf

	Optical Flow
	Detect a Face
	Feature Detection
	Feature Tracking
	Face Tracking

	Extra Credits:
	Additional Tips and Information:

