Deep Learning: Image
Registration
Steven Chen and Ty Nguyen



Lecture Outline

1. Brief Introduction to Deep Learning

2. Case Study 1: Unsupervised Deep Homography

3. Case Study 2: Deep Lucas-Kanade



What is Deep Learning?

Machine Learning with a “deep” neural network
e Supervised Learning
e Unsupervised Learning
e Reinforcement Learning
e ... and more variants

Define:
1. Inputs
2. Architecture
3. Output
4. Loss Function

Optimize by performing gradient descent on network
parameters

"Non-deep" feedforward
neural network

hidden layer

Deep neural network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer




Deep Learning = Learning Features

Classification Regression
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1) Linear Methods: Linear in Input Space
2) Kernel Methods: Linear in Pre-Defined Feature Space
3) Neural Network Methods: Linear in Learned Feature Space



Deep Learning = Learning Hierarchical
Representations
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Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



Training Neural Networks

e Feed Forward Network:
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Connections between neurons do not form a
cycle

Examples: Fully-Connected, Convolutional
Neural Network

Not feedforward: Recurrent Neural Network

Backpropagation / Gradient Descent:

Randomly initialize the network parameters
Calculate loss error at the output

Calculate contributions to error at each step going
backwards

Essentially Chain Rule



Convolutional Neural Network (CNN)

: e N
- Used for images Tig = Dax_ Yi-ki=l  pooling
- Parameter reduction by exploiting spatial iyl
locality \.
- Building Blocks for CNN: (" yiy = flasy) e 1
- Convolutional Layer eg. f(a) = [a]+ no;;'g:ar
- Non-linear Activation Function . f(a) = sigmoid(a) )
- Max-Pooling Layer ' ™\
- Convolution Layer | o ai; = Zk;,gi—k,j—ll convolutional
- Convolution instead of Matrix Multiplication stage
- Usually implemented as \ i s y,
cross-correlation/filtering (kernel not flip)
- Tensorflow o input
- Learn the weights of the kernelffilter vl image

Building-blocks for CNN'’s



Deep Learning in Computer Vision

Applications: (1) Classification, (2) Segmentation; (3) Image
Registration; and more...

Example: Fruit Segmentation
1. Does not utilize prior knowledge about the problem
(besides labels)
2. Standard “template” for any deep learning problem

Standard Deep Learning Template:
1)  Collect image data and ground truth labels
2)  Design network architecture
3) Train via supervised learning by minimizing a loss
function against Ground Truth

Works well... but potential drawbacks:
1. Requires ground truth (not always available)
2. Limited generalization ability (need a lot of
diverse data)
3. Long training times

Chen at al. Counting Apples and Oranges With Deep Learning: A Data-Driven Approach. 2017


http://www.youtube.com/watch?v=2qH9icp1CI8

Deep Learning in Image Registration

Classification and Segmentation have a lot of semantic problem structure
Image Registration is interesting because it has a lot of semantic and geometric structure

Key Theme of Lecture:

Incorporating problem structure and utilizing insights from traditional techniques can lead to more
powerful/efficient deep learning algorithms

Applications:

Estimating Homographies (supervised -> unsupervised: improves performance and data efficiency)
Object Tracking (offline -> hybrid offline/online: improves generalization)

Stereo Vision

Visual Odometry

Image Mosaicing

... much more!

Ok whN =



Case #1: Unsupervised Deep Homography

Estimating Homographies



Case #1 Outline

1) Deep Homography (Supervised)
2) Deep Homography (Unsupervised)

3) Traditional Feature-Based Methods



Homography Definition

A homography that maps x <+ X’ is a linear transformation
represented by a non-singular 3 x 3 matrix H such that:
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- Project points on one plane to points on
another plane.

- 8 free parameters

Left view

Right view



Deep Learning Based Method

- Recap: Deep Learning = Learning
Hierarchical Representations
- Use these features to compute homography

Discrete Choices

H=f ( features on image 1, features on image 2) Layer 2 Features

- Network

- Input: Pair of images

- Output: Vector of 8 parameters
- Training Approaches

- Supervised

- Unsupervised

Layer 1 Features

Original Data

Hierarchical Representations
of a Deep CNN



Supervised Deep Homography

- Needs ground truth, which are homographies parameters in the training data

- Expensive to obtain homography ground truth on real data
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(a) Supervised Approach



Regression Model (a Deep CNN model)
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Fig. 1: Deep Image Homography Estimation. HomographyNet is a Deep Convolutional Neural Network which directly

produces the Homography relating two images. Our method does net require separate corner detection and homography
estimation steps and all parameters are trained in an end-to-end fashion using a large dataset of labeled images.



Geometric Loss vs Supervised Loss

. . 1 o * 2
- Supervised Loss: Ly = §HH4’” —H;, |2
- Sum of square error in homography parameters
- Requires ground truth: not always available Supervised Loss
- Does not capture any properties of the transformation
) : ) | 2
Geometric Loss: T — Y 1A (xi)) — 1B (x3))
- Sum of square error in pixel intensity values [x,\ X;

- Same objective as Direct Methods of Homography Estimation
- Requires no ground truth => Great!
- Captures the consistency property of the transformation => Great!

Geometric Loss

Idea: make use of the geometric loss => A Better Unsupervised Approach



Unsupervised Deep Homography: Idea

Deep Network
First Regression
Image Model
1 Geometric Loss to
train the network
Estimate of H

Warped

Second
Image

Subtraction to get error




Unsupervised Deep Homography: Diagram

- Use “unsupervised” loss function

- Does not use ground truth!
Loss
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(c) Unsupervised Approach

2 new network structures:
1.  Tensor Direct Linear Transform (DLT)
2. Spatial Transformation Layer

N\

Output of the Deep CNN:
N Estimate of parameters of
homography
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Direct Linear Transform (DLT)

Recap: X = Hx
Given 4 pairs of correspondences— H
Consider 1 pair of correspondences

x. = (u,v, 1) and xi’ =, Vv, 1)

Use cross-product to get rid of scale

x; x Hx; =0
1’;3,{]-rh3 h’}
X; x Hx; = | x ' h! — i/ ).Tll =
u; KTh“ —V \:Th]
0., = sl T
T T X! . I
1;1’;‘" x! ()T h’

a x b = ||al| ||b|| sin(f) n

One pair, 2 independent equations

AP h =0



Direct Linear Transform (DLT)

i ) ) One pair, 2 independent equations
- H can be determined with 4 pairs of

correspondences (8 unknown parameters) 7 Aih =0

- Solving for h equivalent to finding the null 4 pairs, 8 independent equations
space of A (8x9 matrix) — SVD ? Ah — 0

- Alternative to SVD, write equation Ah = 0 {}?{?] —x} |vix] hl
to the form Ah = b by moving the last column { . “%% f;_i?-;‘r] [11;] =0
Of A to the right (since h,, = 1) v ux | O3all

- This is straight-forward to solve and easy to compute gradients w.r.t elements
of H



Spatial Transformer

A warping algorithm that transforms input
image | to a new image I’ given a
transformation matrix H (H can be
homography, affine transform ... )
Differentiable w.r.t elements of H
Two steps: grid generator & differentiable
sampling
- Grid generator: G = {G!-}
G; = (uf, L;) Is a pixel in the image I’
Applying inverse of Hto G

Differentiable sampling to pain G,
to obtain image I’

Grid G
after
warping

Create
Grid G

U
‘/?

T ey T, Ty




Results: Performance on Real Images

- Evaluate accuracy of homography estimation
- Use 4 pairs of correspondences. Red color: ground truth, . estimation.
Expectation: yellow polygon overlaps red polygon

Unsupervised Supervised




Feature-Based Approach

1) Detect keypoints in Iy and [

2) Describe keypoints

3) RANSAC to find 4 good pairs

4) Direct Linear Transtorm (DLT) or Singular Value
Decomposition (SVD) to compute homography

Note: these are steps that you may refer to when doing your
upcoming project!



Detecting and Describing Local Features

- How to find a shared pattern of the two images?
- Pixel intensity has a short range, from 0 to 255
- ldea: use a patch other than a single pixel

( )

Feature Descriptors



Simple Local Features (examples)
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“flat” region: “edge”: ‘corner’:
no change in all no change along significant change

directions the edge direction In all directions



Simple Local Features

Corner (curvature) extraction: points where the
edge direction changes rapidly are corners. l.e.
Harris corner, Shi-Tomasi features

Pros: fast

Cons: sensitive to changes in image scale and as
such is unsuited to matching images of differing size
Scale invariant feature transform (SIFT): involves
two stages: feature extraction and description.
Pros: invariant to image scale and rotation, and
with partial invariance to change in illumination.
Cons: Computationally expensive

There are numerous studies in the literature!

(a) Image

(b) Detected corners

(a) Original image
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and direction




Feature Matching

How to define the similarity between two

features f,, f, ?
- Simple approach is SSD(f,, f,): sum of square
differences between entries of two descriptors

WIImES 5 (F6) — 9(i)°

- Does not provide a way to discard ambiguous
(bad) matches

- Better approach: minimize
- ratio distance = SSD(f,, f,)/ sSD(f,, f,)
- Decision rule: accept amatchif SSD < T
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RANSAC: Motivation Example

- There are outliers which represent wrong matches
- How to find good correspondences?

fal Mat+rbhoe hafara P ANSQ A



RANSAC: Motivation Example

- Outliers disappear!

(b) Matches after RANSAC



Case #2: Deep-LK
Tracking Objects



Case #2 Outline

1) Traditional Lucas-Kanade Algorithm

a) Forward-Additive
b) Inverse-Compositional

2) GOTURN (Offline Deep Learning Tracker w/o LK)

3) Deep-LK (Hybrid Online/Offline Deep Learning Tracker w/ LK)



Unsupervised Homography uses LK Objective

miniglizeZ[lo(W(X; p)) — I (x)]°

E.g. affine warp

. - L4 P3 Ps %
Wi _( p2  l+ps pe)(}f)

Lucas-Kanade (Direct Method) applies to general differentiable warps and is used in:

where W (x;p) is a warp function parameterized by p, Iy and
I, are the two images.

1. Tracking
2. Optical Flow
3. Mosaicing

We will introduce the Deep-LK network which is used in object tracking.



Overview of Lucas-Kanade Algorithm

Original minimization

minjgnize Z[I(W(X; p))— T(X)]2

Iteratively solve:

miniﬁrll)lize ;[I(W(X; p+Ap))—T(x)]°

and update p < p+ Ap.

However I(W (x;p+ Ap)) is non-linear...



First-Order Taylor Expansion (Gauss Newton)

Image Gradient X Image Gradient Y

oW
mmirlr)nzez W (x;p) -l-VIa—pAP_T( )]

where VI = [al 31] is image gradient evaluated at W(x;p)
and %"g- is warp Jacobian.The partial derivative is:
ow]’ oW
2 VI— I(W(x +VI—A T(x
y V1| 1w + 915 -7

The closed-form solution is:

Apffw%hm%wmw

where H is Gauss-Newton approximation to Hessian matrix:

oglo]

E.g. affine warp Jacobian ‘
BW_(X 0 y 0 1 0) o w"“ "[2(x) — H(Wix; )]

Ip ety bl Baker and Matthews. Lucas-Kanade 20 Years On: A Unifying Framework (2004)



Inverse-Compositional LK Algorithm

H depends on p, so must be computed at each iteration.
In IC-LK, Hessian is constant, so can be precomputed.

Additive vs Compositional Update
e (Additive) p<« p+Ap
e (Compositional) W (x;p) < W(x;p) o W(x; Ap)
Input and template image reversed:
minﬁi\mizeZ[T(W(x; Ap)) —I(W(x;p))]?
p X
W (x;p) < W(x;p) oW (x; Ap) ™'



Precomputing Jacobian and Hessian

minirlx)ﬁzeZ[T(W(x; 0)) + VT =—Ap—I1(W(x;p))]*

where W(x;0) is the identity warp.

[VTa—W]T H(w(x; p) — T(x).

Ap:H_IZ p

X

pgr ] [

X

where VT is evaluated at W(x;0) and %—"I‘: is evaluated at
(x;0). H does not depend on p and is constant.



GOTURN [1]

Regression based
Fast (100 FPS)
No LK

GOTURN has poor
generalization

Current frame Conv Layers
Search Region

Crop

-——> Fully-Connected

Layers

Crop

- Predicted location

of target
within search region

What to track
Previous frame Conv Layers

[2] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression networks. 2016



Deep-LK

Minimize feature distance instead of intensity distance

Deep-LK uses IC-LK algorithm with update rule:

Ap=M"[p(I(W(x;p)) — (T (x))]

Mt =Y (sTsy) "' S§

X

M is the Moore-Penrose pseudoinverse
¢ (-) is a feature extraction function (convnet).

JdT (W(x;p)) oW (x;p) ‘
W (x:p) I [y—0

_99(T(W(x; dT (W (x;p)) IW(x;

Before S = VT%—‘;/ =

Can view as regression:
R-¢(I(W(x;p))+b
R=M"

b=—-M"-¢(T(x))

[1] Wang et al. Deep-LK for Efficient Adaptive
Object Tracking. 2017



Deep-LK

Training template Testing

image T regression parameters

+

template
image T regression parameters

+
R =Wy

source

ground- source mage |
truth warp [N2 image I warp :
parameter parameter

Huber loss

Wang et al. Deep-LK for Efficient Adaptive Object Tracking. 2017



Results

Wang et al. Deep-LK for Efficient Adaptive Object Tracking. 2017


http://www.youtube.com/watch?v=1q3GrYf9k-E

Thank you!



