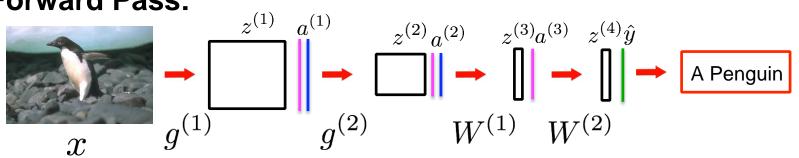
Improving Learning in Neural Networks CIS 680

Notation:

_____ - convolutional layer output ______ - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:



Notation:

- convolutional layer output
 - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:

 \mathcal{X}

$$= \sum_{g^{(1)}}^{z^{(1)}} = \sum_{g^{(2)}}^{a^{(1)}} = \sum_{W^{(1)}}^{z^{(2)}a^{(2)}} = \sum_{W^{(1)}}^{z^{(3)}a^{(3)}} = \sum_{W^{(2)}}^{z^{(4)}\hat{y}} = A \text{ Penguin}$$

$$= \sum_{g^{(1)}}^{a^{(1)}} = pool(f(g^{(1)} * x))$$

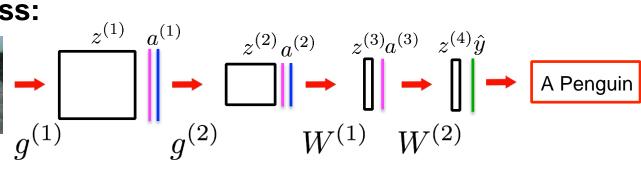
$$= pool(f(g^{(1)} * x))$$

Notation:

_____ - convolutional layer output ______ - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:



1.
$$a^{(1)} = pool(f(g^{(1)} * x))$$

2. $a^{(2)} = pool(f(g^{(2)} * a^{(1)}))$

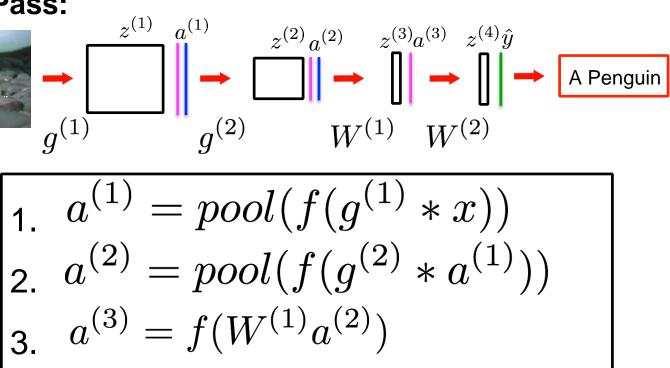
Notation:

_____ - convolutional layer output ______ - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:

 \mathcal{X}



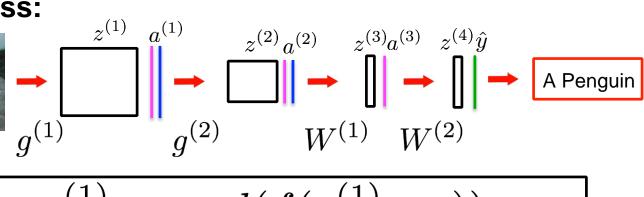
Notation:

_____ - convolutional layer output ______ - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:

 \mathcal{X}



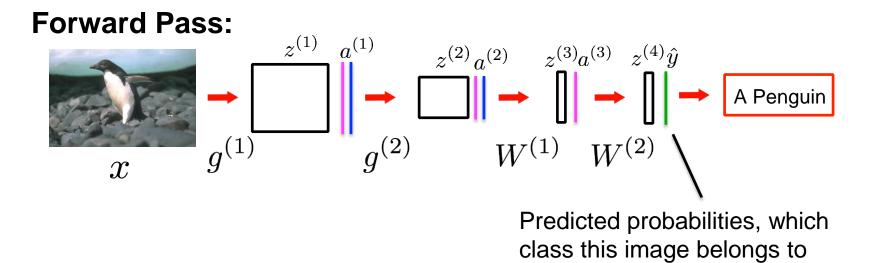
1.
$$a^{(1)} = pool(f(g^{(1)} * x))$$

2. $a^{(2)} = pool(f(g^{(2)} * a^{(1)}))$
3. $a^{(3)} = f(W^{(1)}a^{(2)})$
4. $\hat{y} = softmax(W^{(2)}a^{(3)})$

Notation:

- convolutional layer output - fully connected layer output

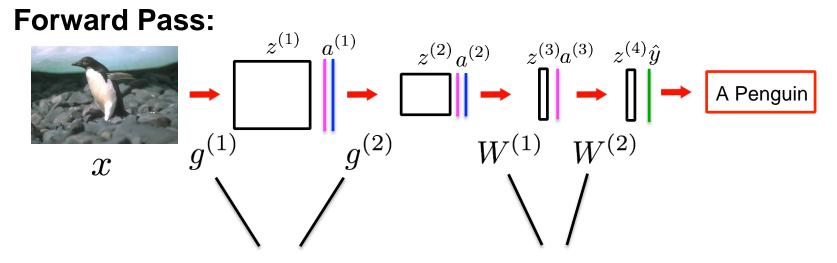
- max pooling layer $\,$ - sigmoid function f - softmax function



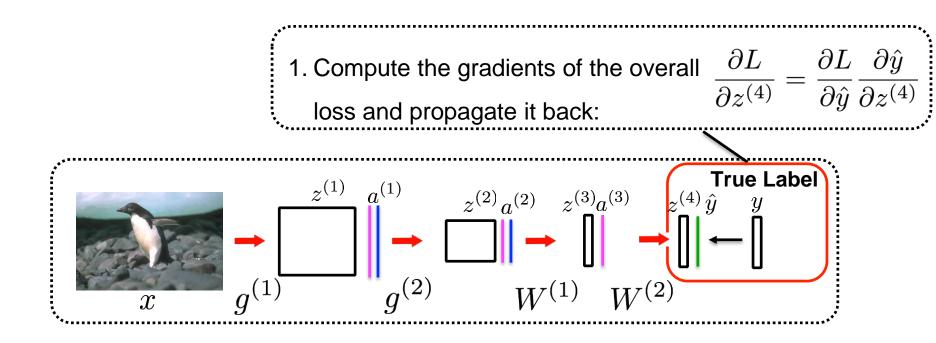
Notation:

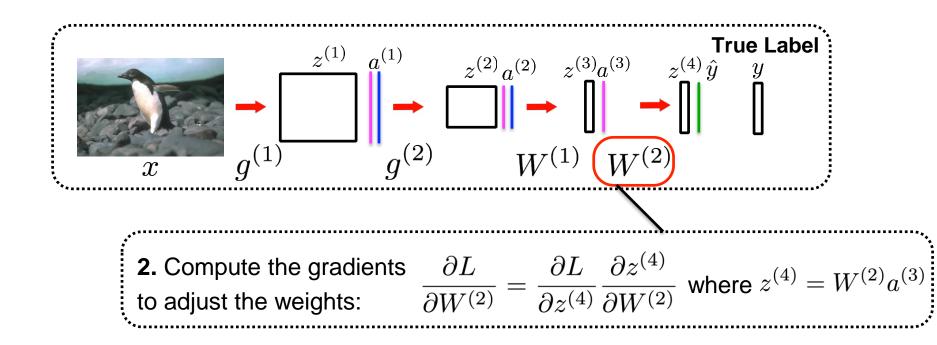
_____ - convolutional layer output ______ - fully connected layer output

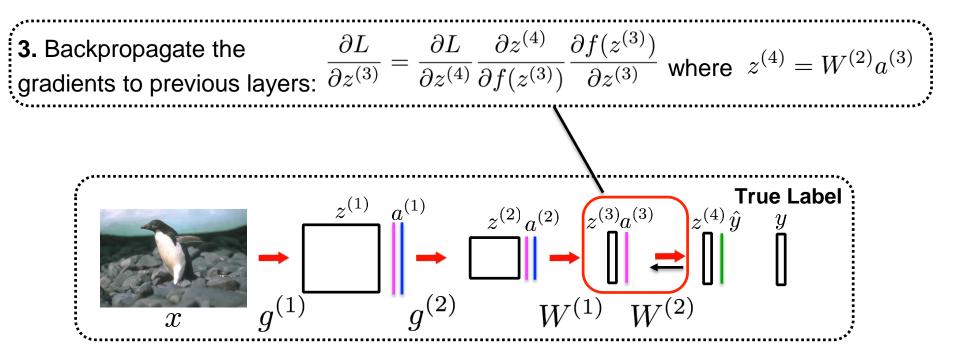
- max pooling layer $\,$ - sigmoid function f $\,$ - softmax function

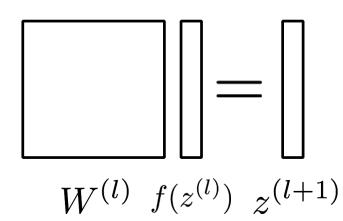


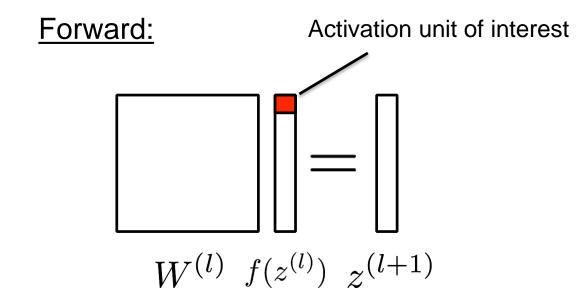
How to learn the parameters from the data?

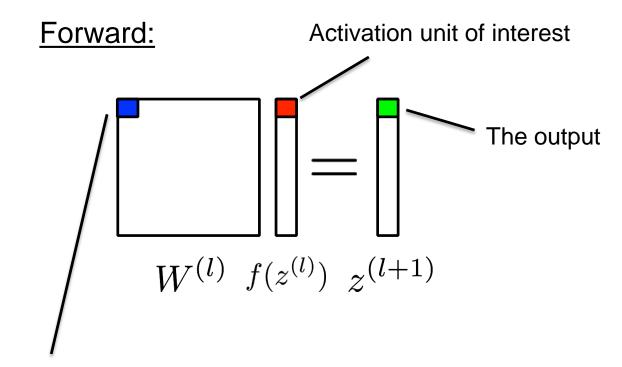




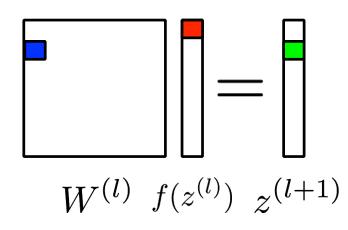


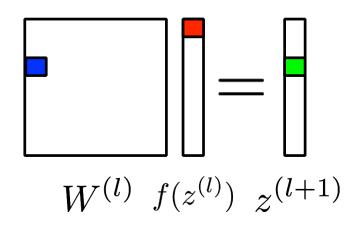


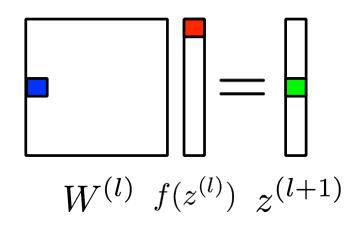




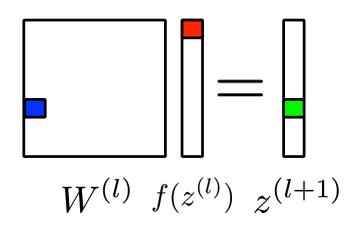
The weight that is used in conjunction with the activation unit of interest

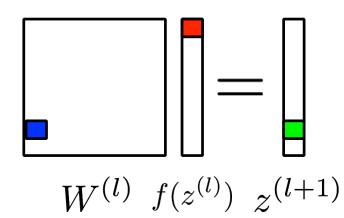


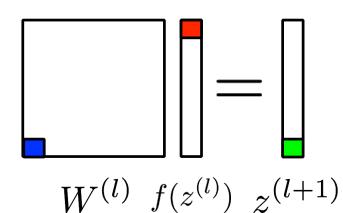


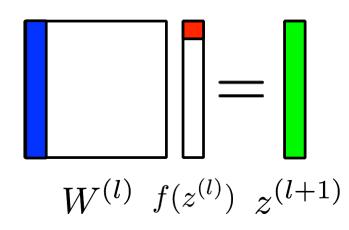


Fully Connected Layers:

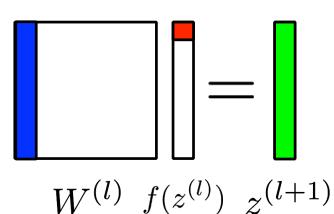


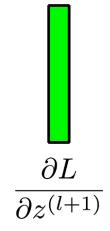






Forward:





Forward:

 $W^{(l)} f(z^{(l)}) z^{(l+1)}$

A measure how much an activation unit contributed to the loss

 ∂L

 ∂L

 $\overline{\partial z^{(l+1)}} \quad \overline{\partial f(z^{(l)})}$

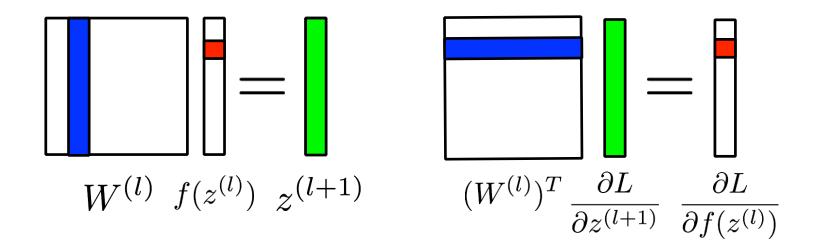
Forward:

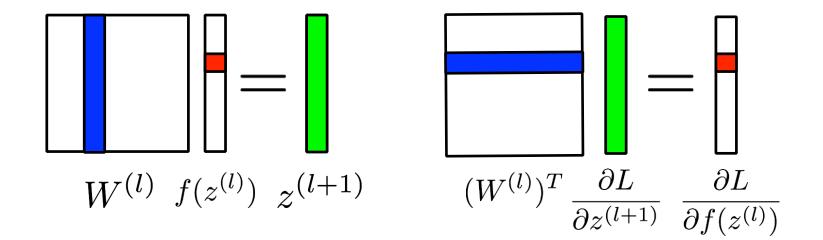
 $W^{(l)} f(z^{(l)}) z^{(l+1)}$

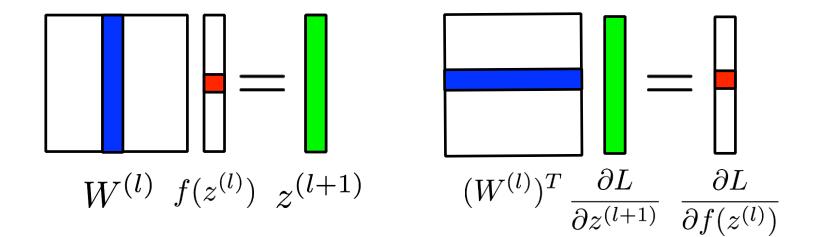
A measure how much an activation unit contributed to the loss

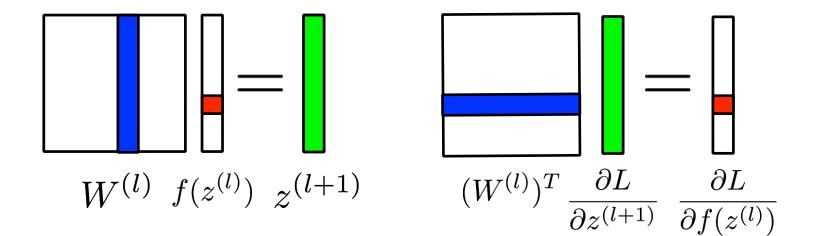
 $(W^{(l)})^T \frac{\partial L}{\partial z^{(l+1)}} \frac{\partial L}{\partial f(z^{(l)})}$

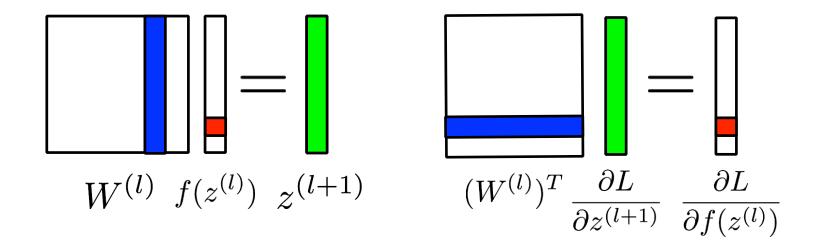
Forward:

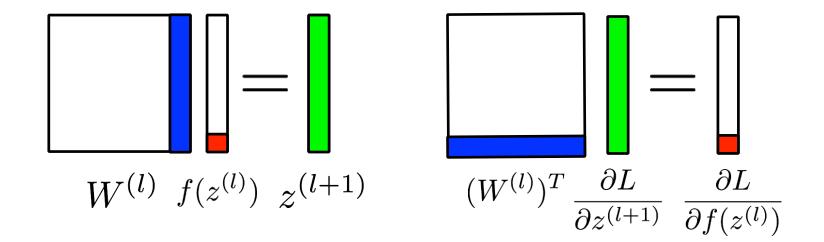


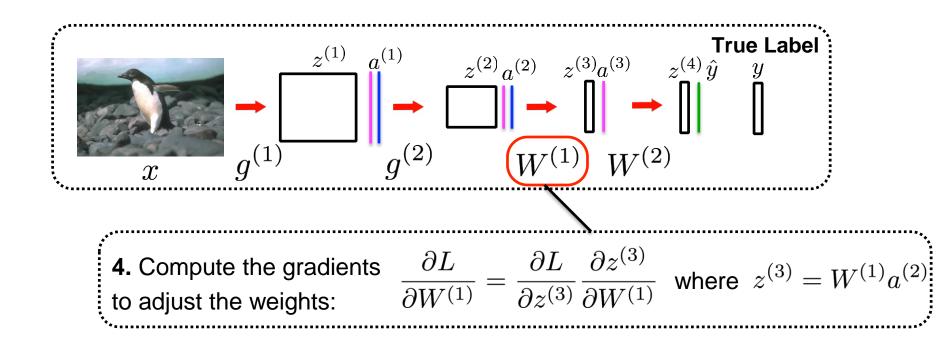


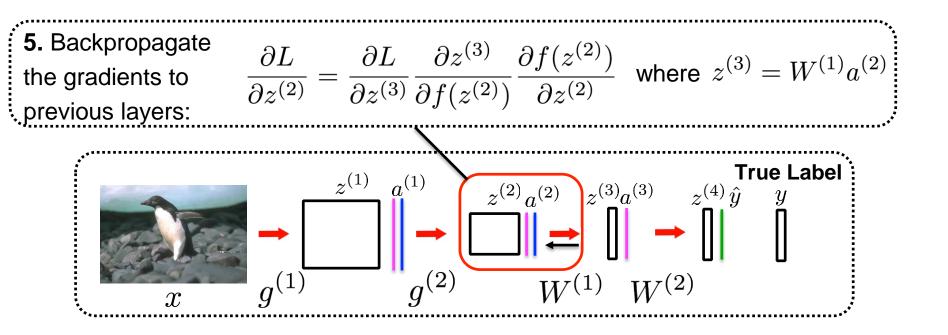


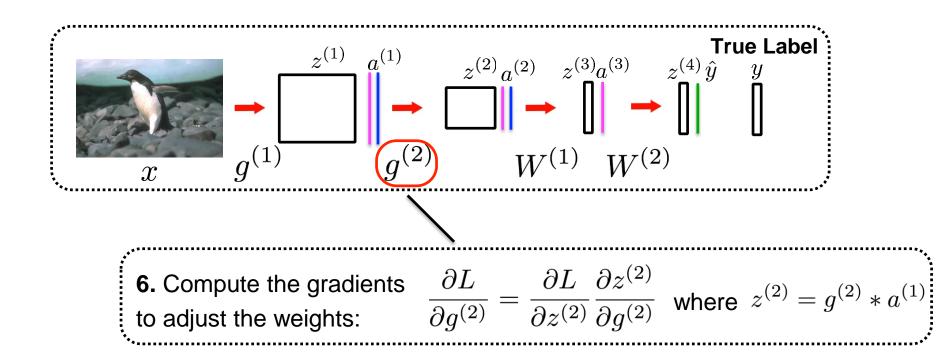


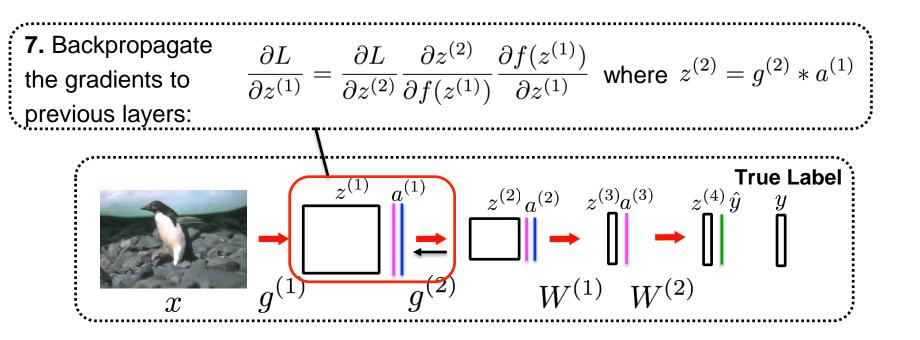




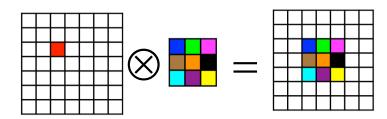






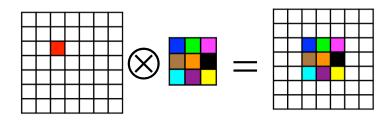


Convolutional Layers:

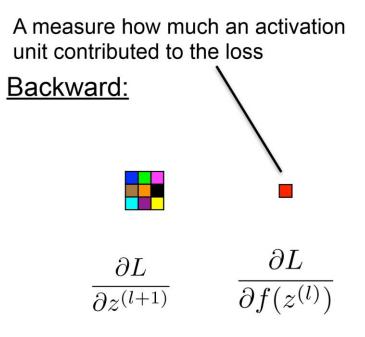


$$a^{(\ell)} \otimes g^{(\ell)} = z^{(\ell+1)}$$

Convolutional Layers:

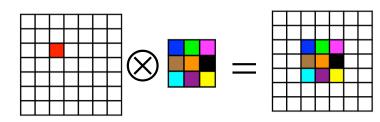


$$a^{(l)} \otimes g^{(l)} = z^{(l+1)}$$

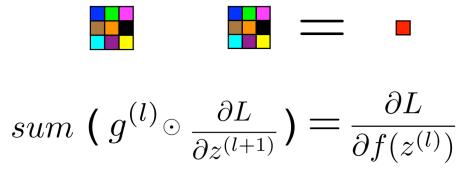


Convolutional Layers:

Forward:

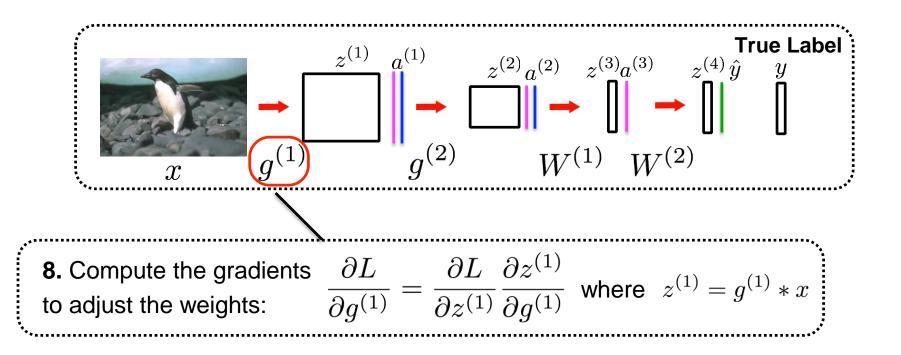


Backward:



$$a^{(l)} \otimes g^{(l)} = z^{(l+1)}$$

Backpropagation



Neural Network Learning

Google Deepmind DQN playing Atari Breakout

Setup: NVIDIA GTX 690 i7-3770K - 16 GB RAM Ubuntu 16.04 LTS Google Deepmind DQN

Neural Network Learning

Google Deepmind DQN playing Atari Breakout

Setup: NVIDIA GTX 690 i7-3770K - 16 GB RAM Ubuntu 16.04 LTS Google Deepmind DQN

How do we better understanding various properties behind the learning process in neural nets?

Loss / Cost function:

 Loss function defines what we want the neural network to learn.

Loss / Cost function:

 Loss function defines what we want the neural network to learn.

How do we select a good loss function?

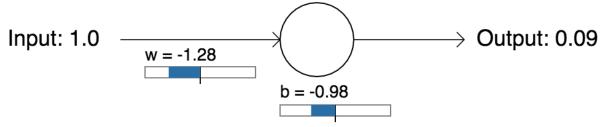
Loss / Cost function:

- Loss function defines what we want the neural network to learn.
- Humans learn best when they get feedback after being very wrong (e.g. a person learns to avoid scams after the first time he/she was scammed).

Loss / Cost function:

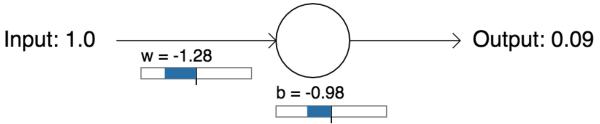
- Loss function defines what we want the neural network to learn.
- Humans learn best when they get feedback after being very wrong (e.g. a person learns to avoid scams after the first time he/she was scammed).
- Does the same learning trend apply to neural networks? If not we want to design a loss function with such learning characteristics.

Loss / Cost function:



Loss / Cost function:

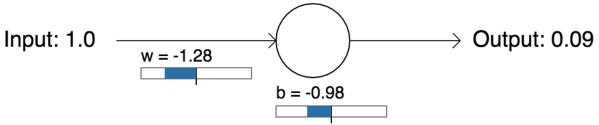
Consider a neural network consisting of a single hidden neuron:



$$L = \frac{1}{2}(\sigma(z) - y)^2$$

Loss / Cost function:

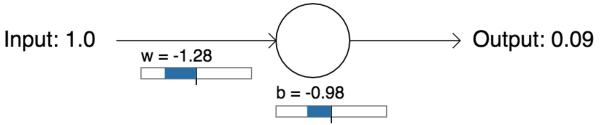
Consider a neural network consisting of a single hidden neuron:

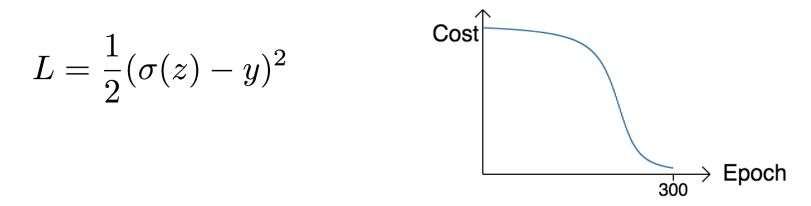


$$L = \frac{1}{2}(\sigma(z) - y)^2$$
NN prediction ground truth

Loss / Cost function:

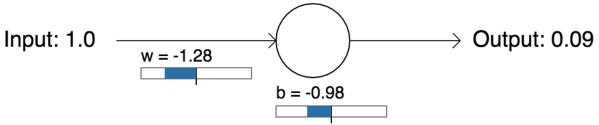
Consider a neural network consisting of a single hidden neuron:

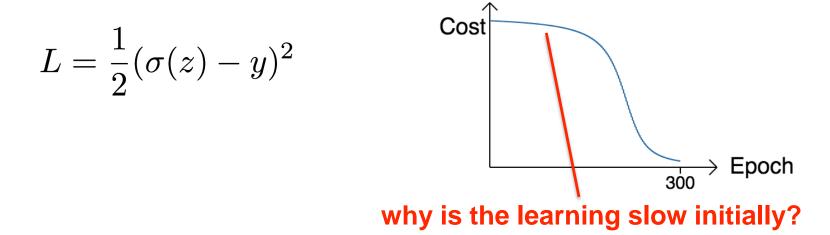




Loss / Cost function:

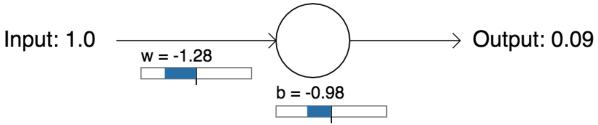
Consider a neural network consisting of a single hidden neuron:



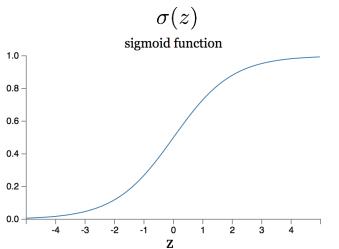


Loss / Cost function:

Consider a neural network consisting of a single hidden neuron:

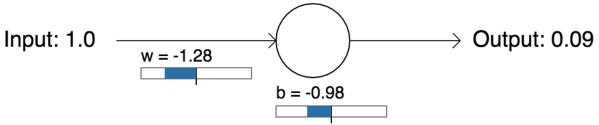


$$L = \frac{1}{2}(\sigma(z) - y)^2$$
$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x$$



Loss / Cost function:

Consider a neural network consisting of a single hidden neuron:

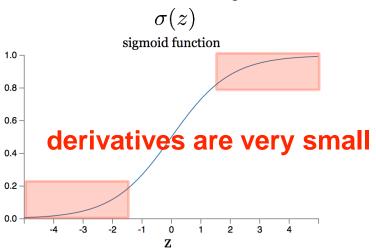


• First, let's examine a commonly used L2 loss objective:

$$L = \frac{1}{2}(\sigma(z) - y)^2$$

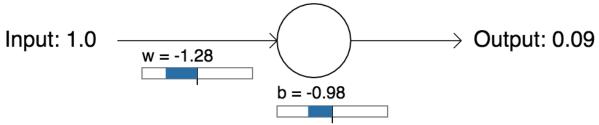
$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x$$

 \mathbf{A}



Loss / Cost function:

Consider a neural network consisting of a single hidden neuron:

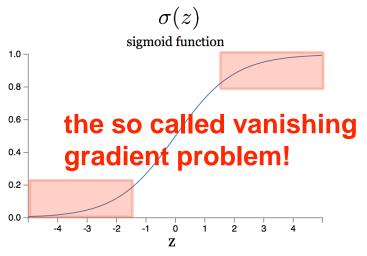


• First, let's examine a commonly used L2 loss objective:

$$L = \frac{1}{2}(\sigma(z) - y)^2$$

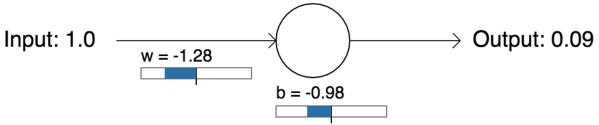
$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x$$

OT.



Loss / Cost function:

Consider a neural network consisting of a single hidden neuron:



• First, let's examine a commonly used L2 loss objective:

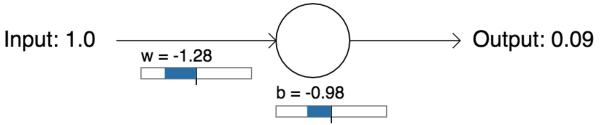
$$L = \frac{1}{2}(\sigma(z) - y)^{2}$$

$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x$$
How do we address this problem?

 $\sigma(z)$

Loss / Cost function:

Consider a neural network consisting of a single hidden neuron:



• First, let's examine a commonly used L2 loss objective:

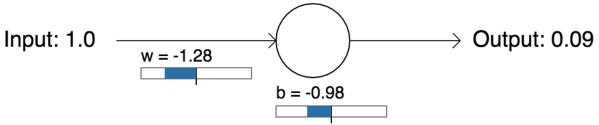
$$L = \frac{1}{2}(\sigma(z) - y)^2$$

We need a learning objective that wouldn't have a sigmoid derivative in the gradient.

$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x$$

Loss / Cost function:

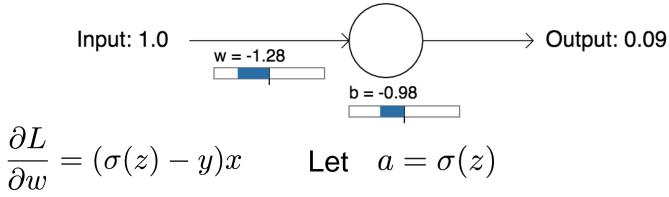
Consider a neural network consisting of a single hidden neuron:



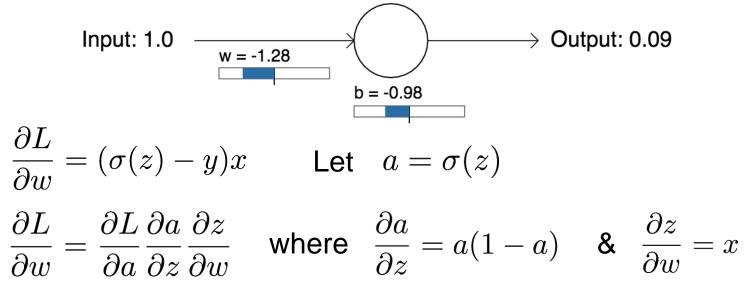
$$L = \frac{1}{2} (\sigma(z) - y)^2$$

We want the following gradient:
$$\frac{\partial L}{\partial w} = (\sigma(z) - y)\sigma'(z)x \quad \longrightarrow \quad \frac{\partial L}{\partial w} = (\sigma(z) - y)x$$

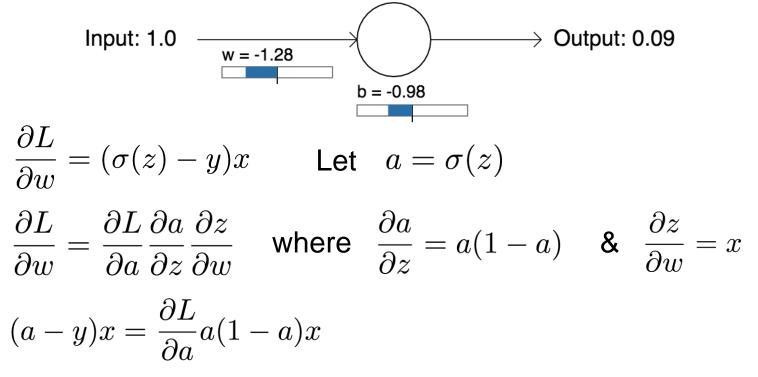
Loss / Cost function:



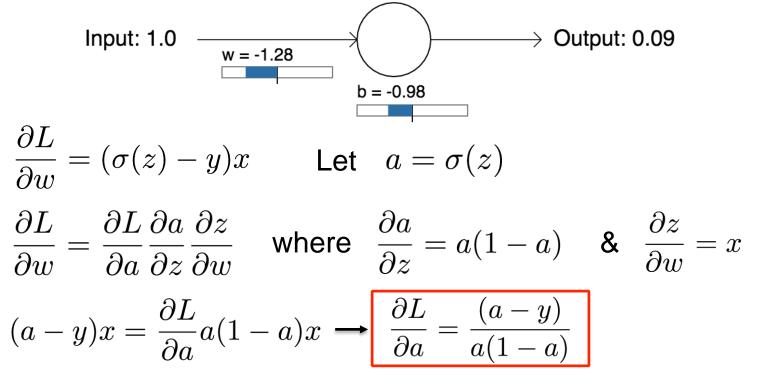
Loss / Cost function:



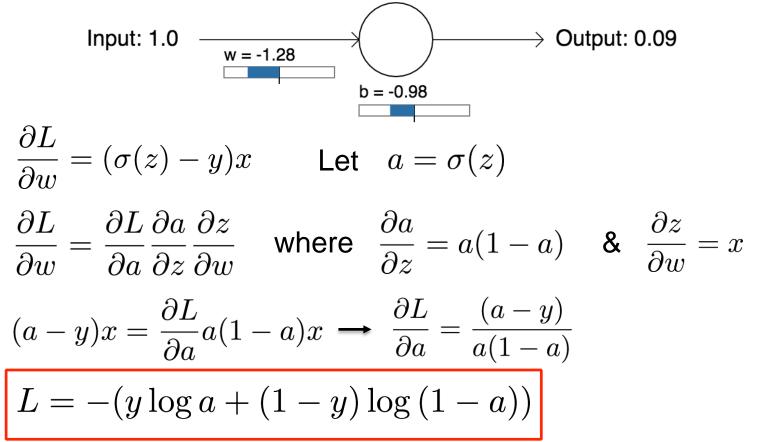
Loss / Cost function:



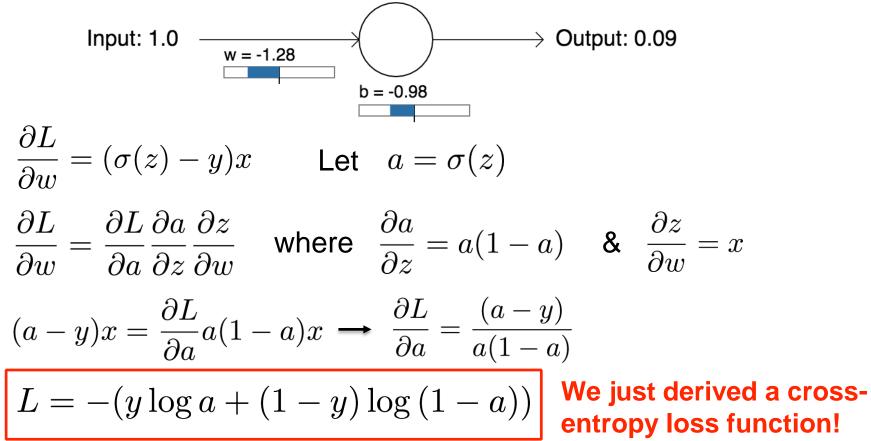
Loss / Cost function:



Loss / Cost function:

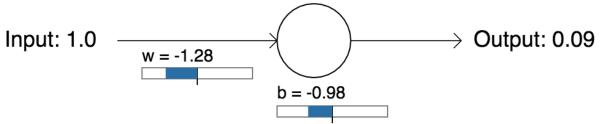


Loss / Cost function:



Loss / Cost function:

 Consider a neural network consisting of a single hidden neuron:

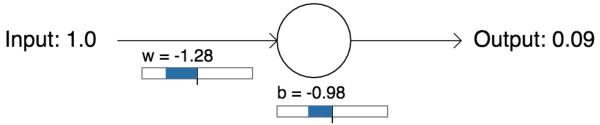


• Now let's examine a cross-entropy loss objective:

$$L = -(y \log a + (1 - y) \log (1 - a))$$

Loss / Cost function:

 Consider a neural network consisting of a single hidden neuron:

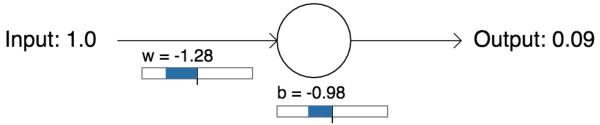


• Now let's examine a cross-entropy loss objective:

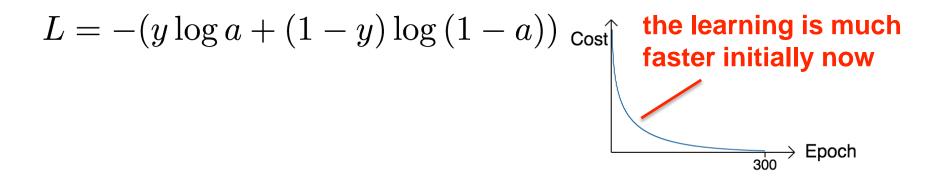
$$L = -(y \log a + (1 - y) \log (1 - a)) \operatorname{Cost} \xrightarrow{\text{Cost}} \operatorname{Epoch}$$

Loss / Cost function:

 Consider a neural network consisting of a single hidden neuron:

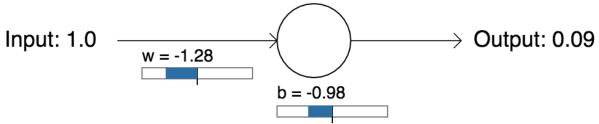


• Now let's examine a cross-entropy loss objective:



Loss / Cost function:

 Consider a neural network consisting of a single hidden neuron:



• Now let's examine a cross-entropy loss objective:

no sigmoid derivatives in the gradient equation

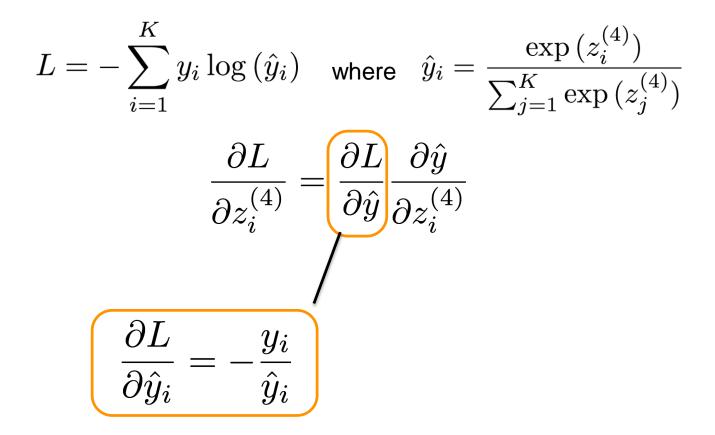
Loss / Cost function:

$$L = -\sum_{i=1}^{K} y_i \log(\hat{y}_i) \quad \text{where} \quad \hat{y}_i = \frac{\exp(z_i^{(4)})}{\sum_{j=1}^{K} \exp(z_j^{(4)})}$$

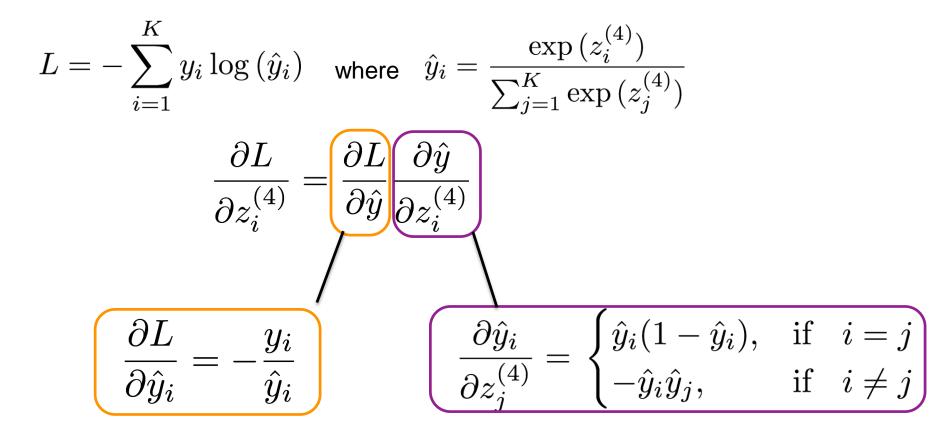
Loss / Cost function:

$$\begin{split} L &= -\sum_{i=1}^{K} y_i \log \left(\hat{y}_i \right) \quad \text{where} \quad \hat{y}_i = \frac{\exp \left(z_i^{(4)} \right)}{\sum_{j=1}^{K} \exp \left(z_j^{(4)} \right)} \\ & \frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} \end{split}$$

Loss / Cost function:



Loss / Cost function:



Loss / Cost function:

$$\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}}$$

Loss / Cost function:

$$\frac{\partial L}{\partial z_i^{(4)}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}}$$
$$= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}}$$

Loss / Cost function:

$$\begin{aligned} \frac{\partial L}{\partial z_i^{(4)}} &= \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} \\ &= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}} \\ &= \hat{y}_i - y_i \end{aligned}$$

How to Improve NN Learning?

Loss / Cost function:

How about the softmax loss function?

$$\begin{aligned} \frac{\partial L}{\partial z_i^{(4)}} &= \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} \\ &= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}} \\ &= \hat{y}_i - y_i \end{aligned}$$

• No sigmoid derivatives in the gradient!

How to Improve NN Learning?

Loss / Cost function:

How about the softmax loss function?

$$\begin{aligned} \frac{\partial L}{\partial z_i^{(4)}} &= \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_i^{(4)}} \\ &= \frac{\partial L}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial z_i^{(4)}} + \sum_{i \neq j} \frac{\partial L}{\partial \hat{y}_j} \frac{\partial \hat{y}_j}{\partial z_i^{(4)}} \\ &= \hat{y}_i - y_i \end{aligned}$$

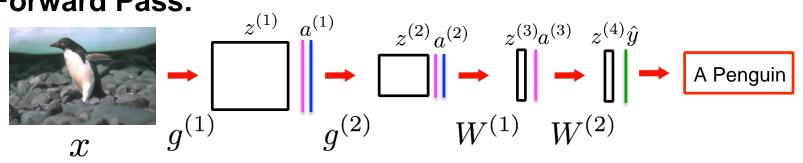
- No sigmoid derivatives in the gradient!
- Therefore, learning shouldn't be slowed down.

Notation:

- convolutional layer output - fully connected layer output

- max pooling layer $\,$ - sigmoid function $f\,$ - softmax function

Forward Pass:

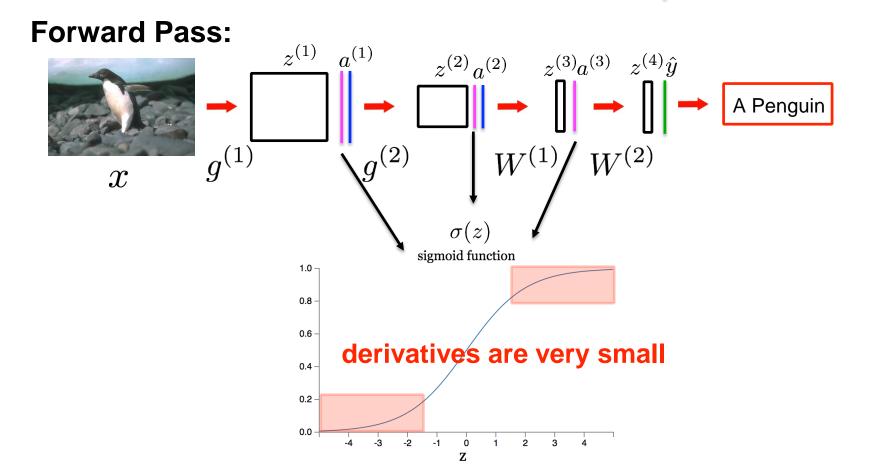


Did we solve the vanishing gradient problem?

Notation:

] - convolutional layer output

- max pooling layer $\,$ - sigmoid function f - softmax function



Notation:

] - convolutional layer output

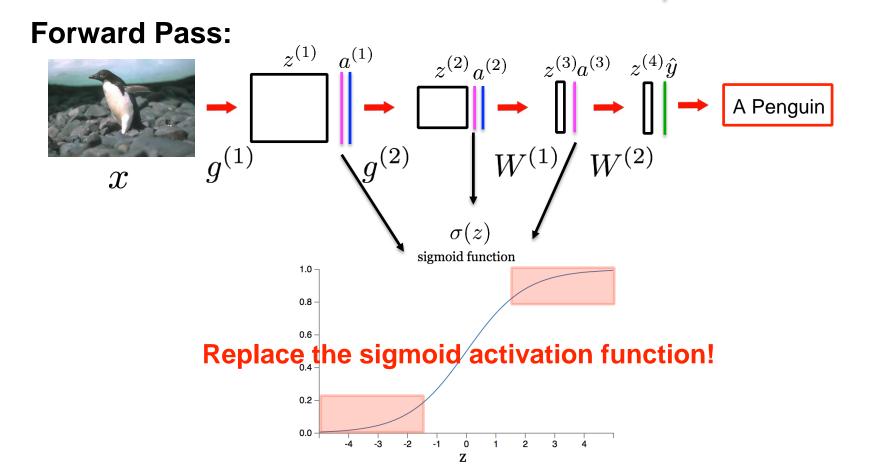
- max pooling layer $\,$ - sigmoid function f - softmax function

Forward Pass: $z^{(1)} a^{(1)}$ $W^{(1)} / W^{(2)}$ $g^{(1)}$ \mathcal{X} sigmoid function 1.0 -0.8 0.6 How can we fix this? 0.4 0.2 -0.0 -2 -1 0 1 2 3 4 -3 -4

Notation:

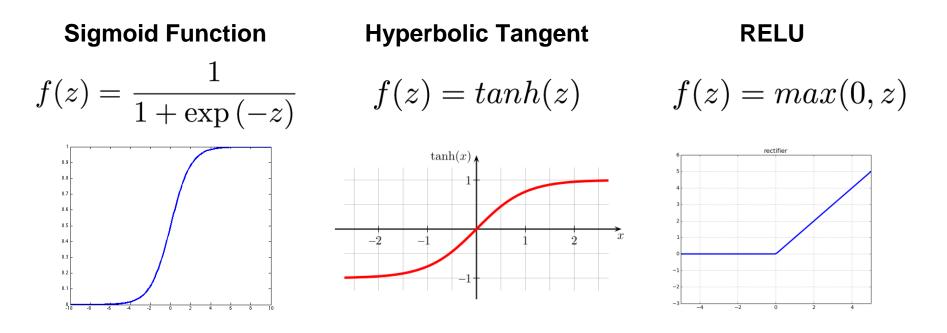
- convolutional layer output

- max pooling layer $\,$ - sigmoid function f - softmax function

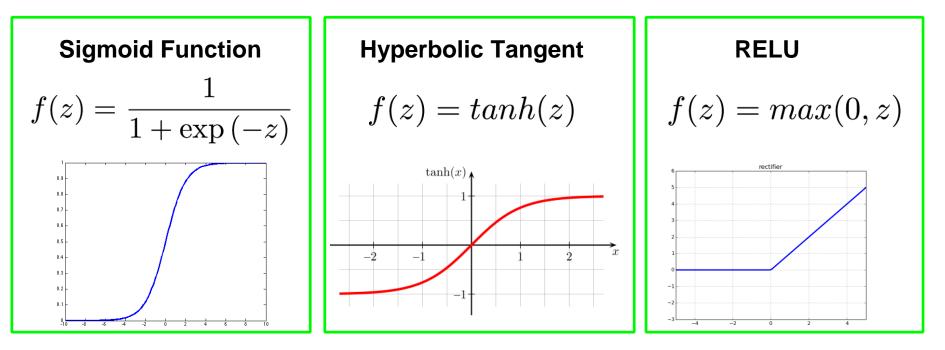


- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.

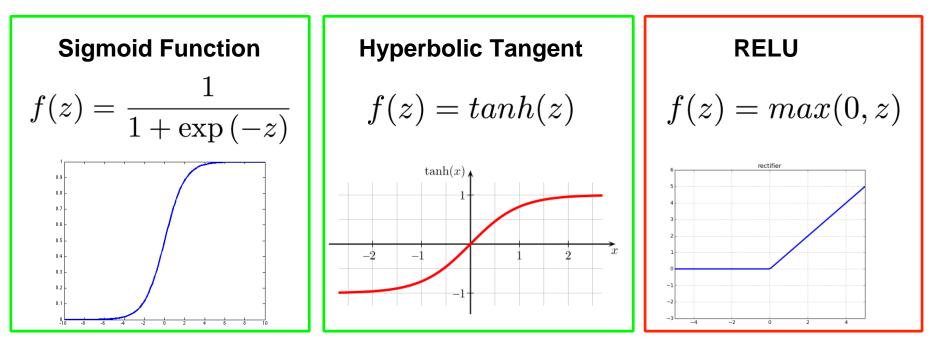
- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.



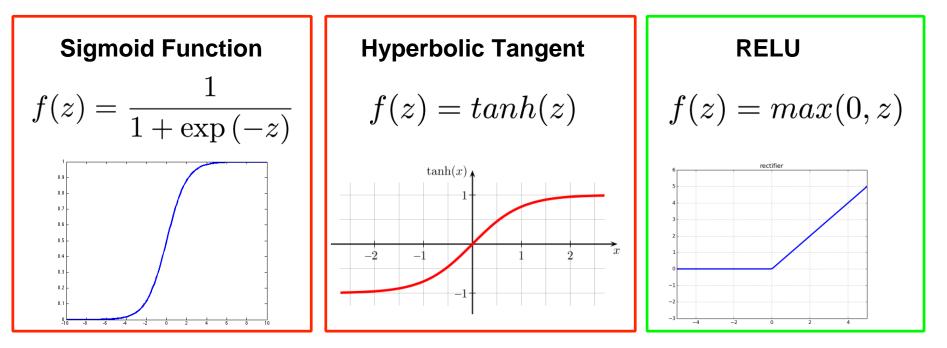
- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.



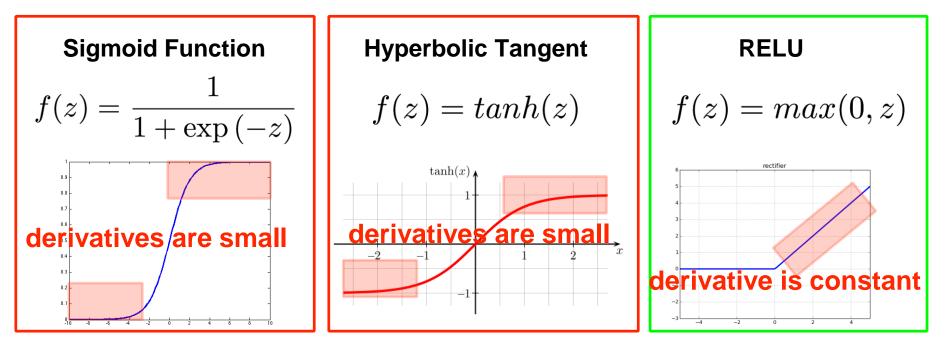
- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.



- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.

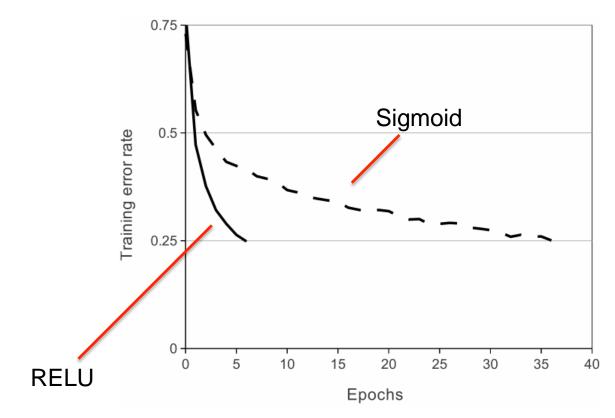


- We want the activation function to be non-linear.
- We want the activation function to be differentiable.
- We want an activation function that eliminates the vanishing gradient problem.



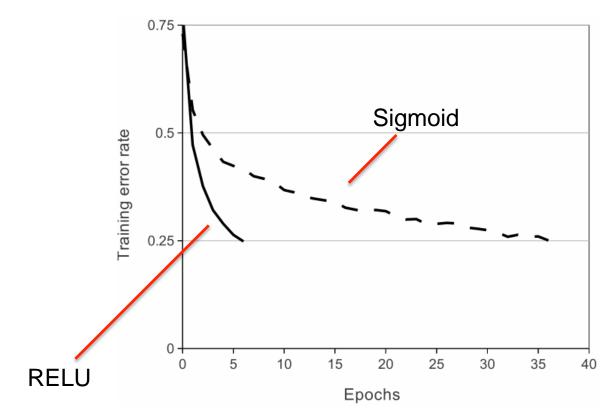
Learning Speed:

• The network that uses a RELU activation function learns significantly faster.



Learning Speed:

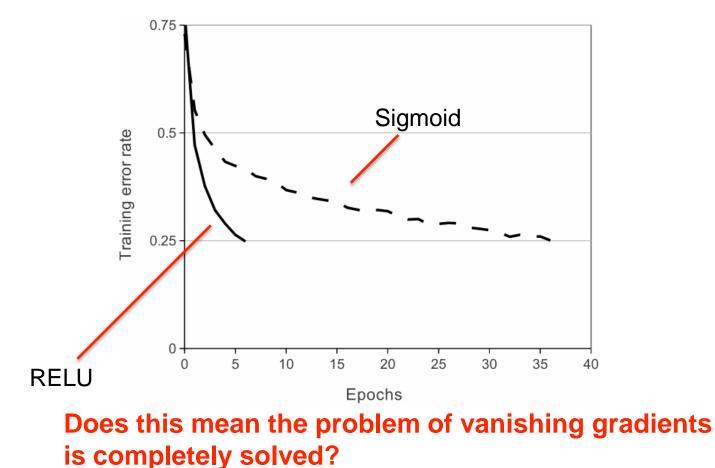
• The network that uses a RELU activation function learns significantly faster.



Training is significantly faster when using the RELU function

Learning Speed:

• The network that uses a RELU activation function learns significantly faster.



Learning Speed:

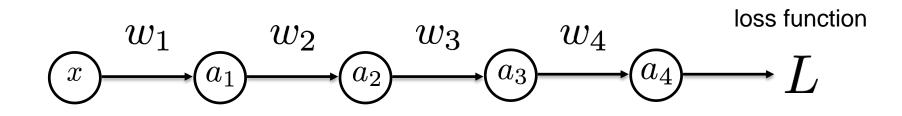
- It turns out that even using RELU activation function doesn't completely eliminate the vanishing gradient problem.
- The key question is why the vanishing gradient problem still persists.
- To understand this we need to revisit the original back propagation algorithm.

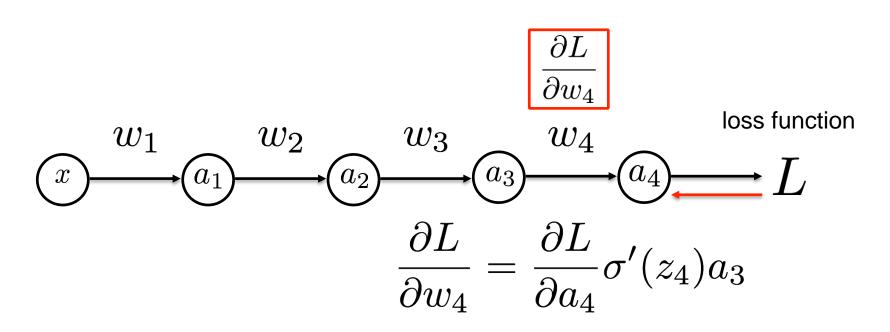
Backpropagation

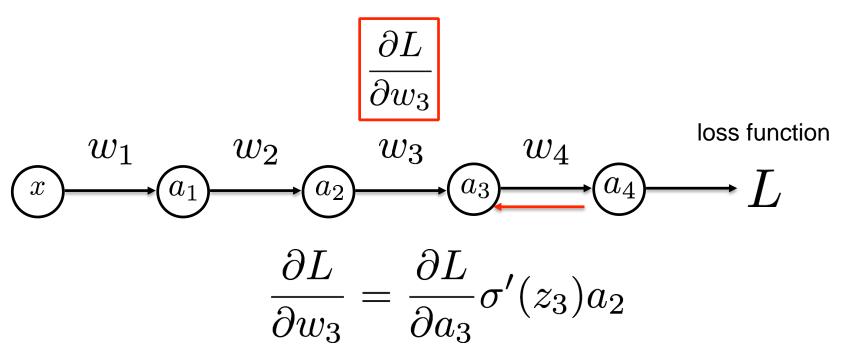
1. Let $\frac{\partial L}{\partial z_i^{(n)}} = \hat{y}_i - y_i$, where n denotes the number of layers in the network. 2. For each fully connected layer l: • For each node i in layer l set: $\frac{\partial L}{\partial z_i^{(l)}} = (\sum_{i=1}^{s^{l+1}} W_{ji}^{(l)} \frac{\partial L}{\partial z_i^{(l+1)}}) \frac{\partial f(z_i^{(l)})}{\partial z_i^{(l)}}$

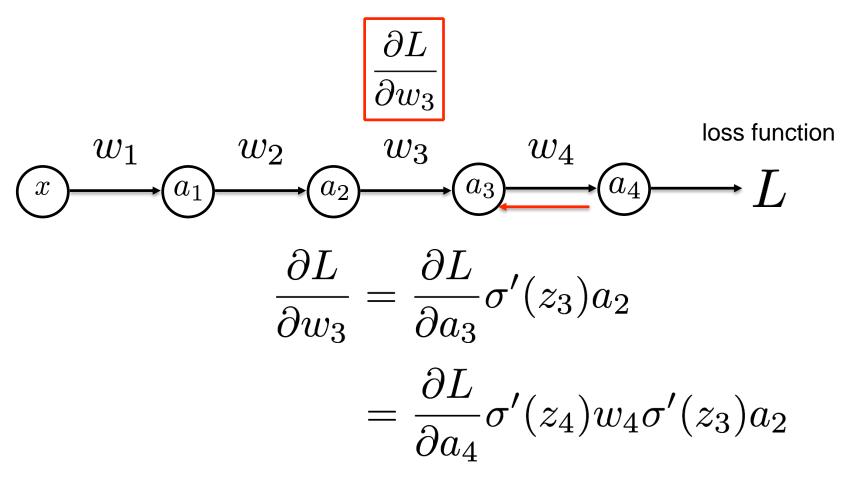
- Compute partial derivatives: $\frac{\partial L}{\partial W_{ij}^{(l)}} = f(z_j^{(l)}) \frac{\partial L}{\partial z_i^{(l+1)}}$
- Update the parameters:

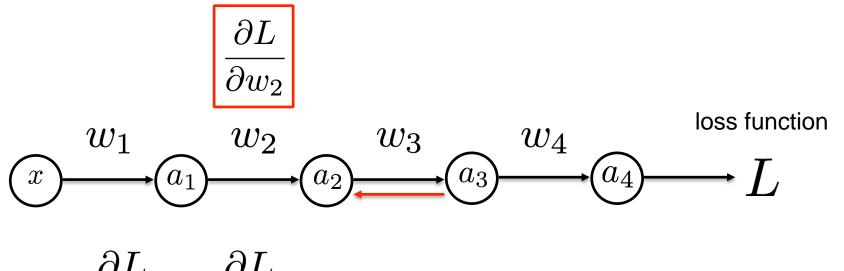
$$W_{ij}^{(l)} = W_{ij}^{(l)} - \alpha \frac{\partial L}{\partial W_{ij}^{(l)}}$$



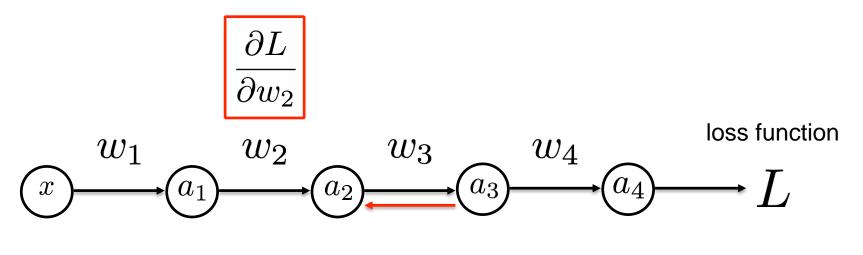






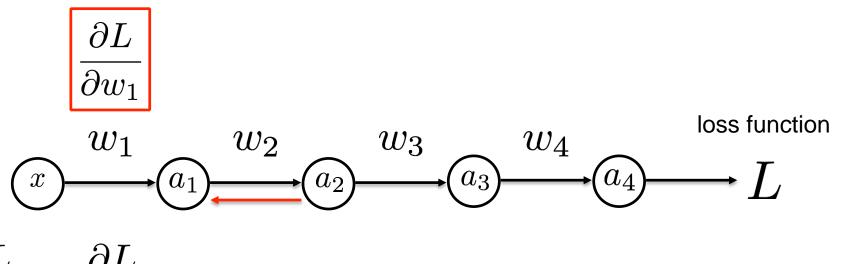


$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_2} \sigma'(z_2) a_1$$

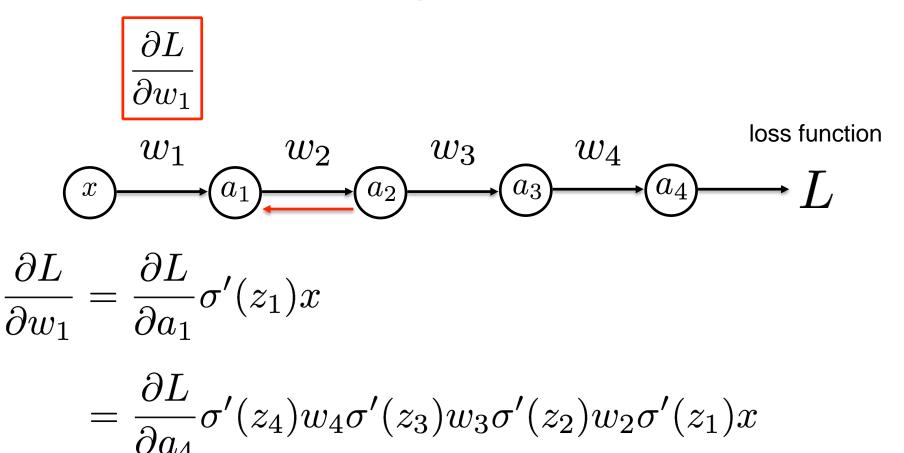


$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a_2} \sigma'(z_2) a_1$$

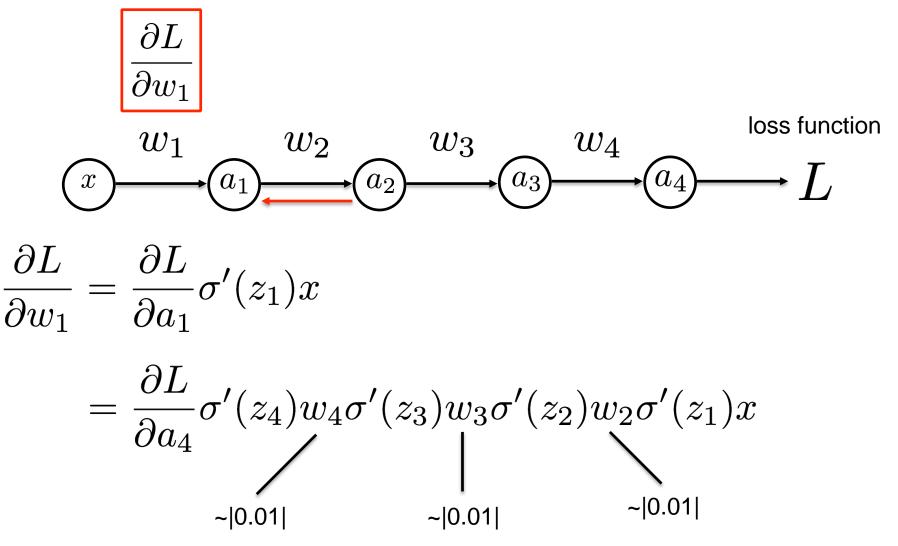
$$=\frac{\partial L}{\partial a_4}\sigma'(z_4)w_4\sigma'(z_3)w_3\sigma'(z_2)a_1$$



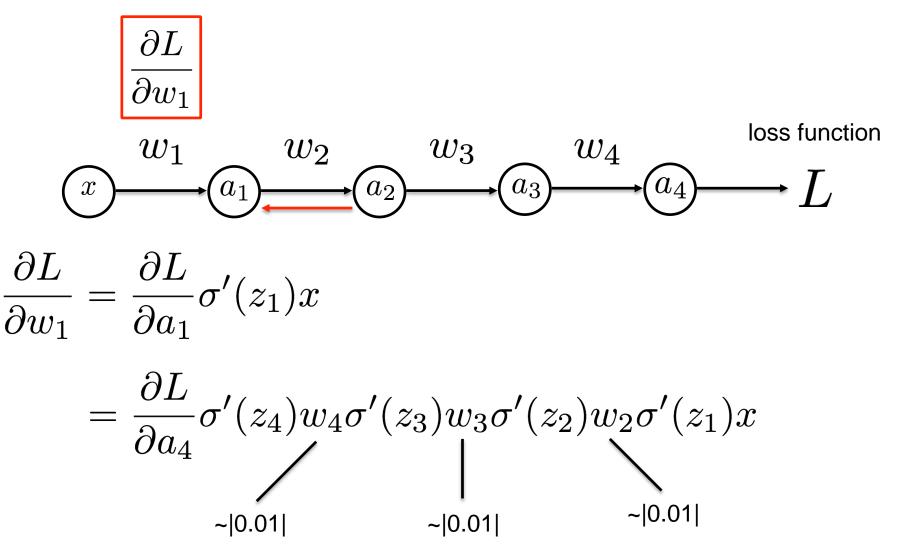
 $\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1) x$



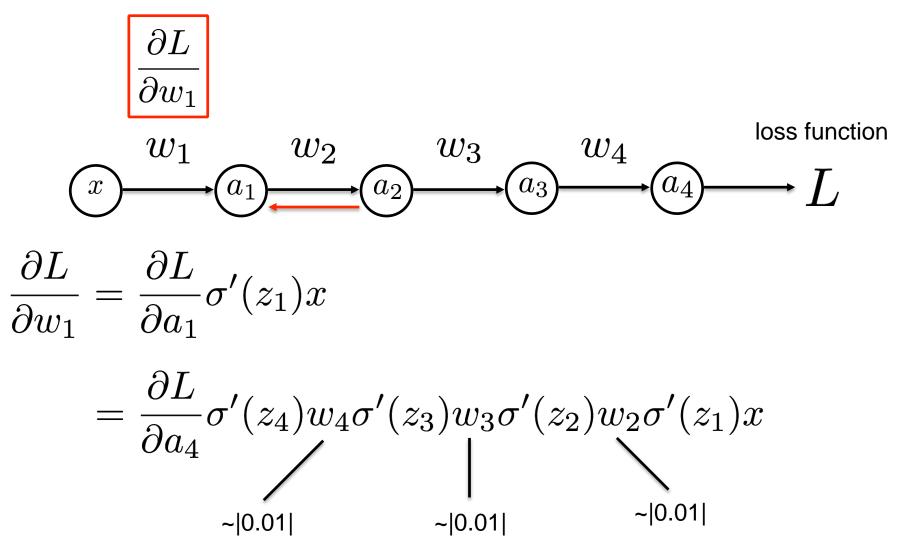
 Ou_4



• Weights are typically initialized to small values (e.g. gaussian distribution with 0 mean and 0.01 std dev)



• Exponential decrease in the gradient as we move towards the early hidden layers.



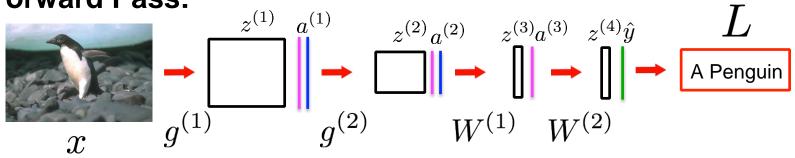
• As a result, the deepest hidden layers learn significantly faster, relative to the early layers that may not learn much at all.

• We can reduce the vanishing gradient problem and make learning more effective via deep supervision.

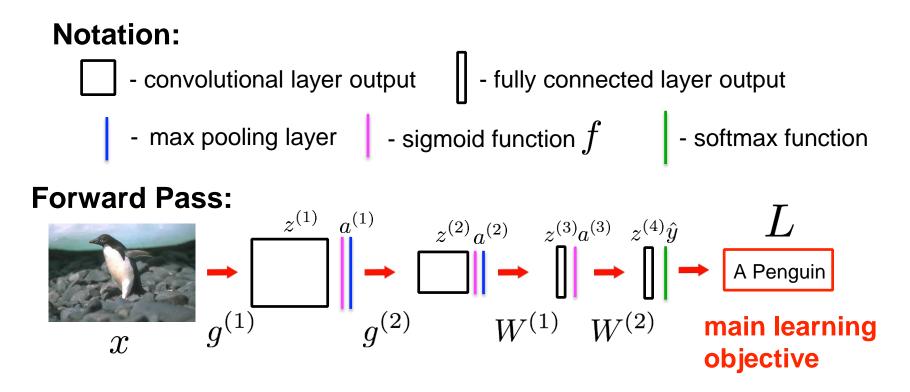
- We can reduce the vanishing gradient problem and make learning more effective via deep supervision.
- Deep supervision refers to a concept of adding learning objectives / loss functions to the intermediate hidden layers.

- We can reduce the vanishing gradient problem and make learning more effective via deep supervision.
- Deep supervision refers to a concept of adding learning objectives / loss functions to the intermediate hidden layers.
- Backpropagation proceeds as usual, but now the gradients are propagated not from one but from multiple loss layers.

Standard CNN:

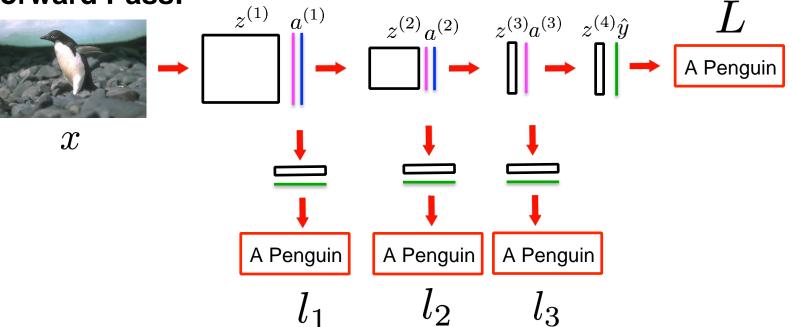


Standard CNN:



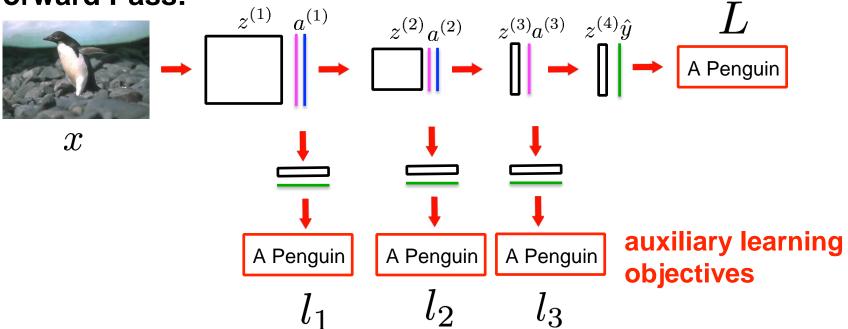
Deeply Supervised CNN:

Notation:



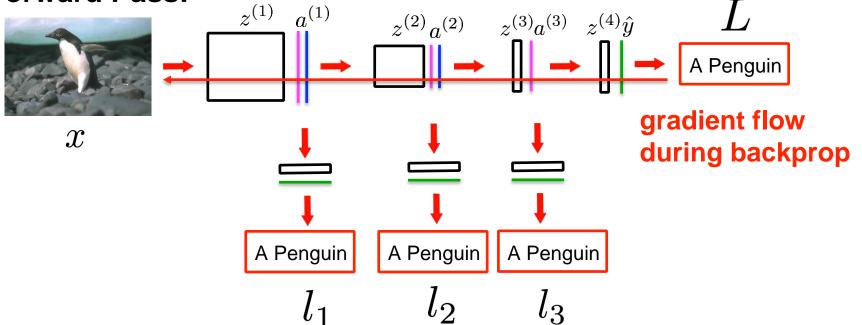
Deeply Supervised CNN:

Notation:



Deeply Supervised CNN:

Notation:



Deeply Supervised CNN:

Notation:

Forward Pass: $x^{(1)} \xrightarrow{a^{(1)}} z^{(2)} \xrightarrow{a^{(2)}} z^{(3)} \xrightarrow{a^{(3)}} z^{(4)} \xrightarrow{f} A \text{ Penguin}}$ $x \xrightarrow{f} \xrightarrow{f} A \text{ Penguin} A \text{ Penguin} A \text{ Penguin} B \text{ gradient flow} \text{ during backprop}$ $l_1 \quad l_2 \quad l_3$

• Assume that we are a given a **labeled** training dataset

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

• Typically we would employ the following loss function:

$$L = -(y \log f(x) + (1 - y) \log (1 - f(x)))$$

• Assume that we are a given a **labeled** training dataset

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

• Typically we would employ the following loss function:

$$L = -(y \log f(x) + (1 - y) \log (1 - f(x)))$$

• Under deeply supervised networks, we will use:

$$L_{new} = L + \sum_{j} \alpha_{j} l_{j}$$

• Assume that we are a given a **labeled** training dataset

$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

• Typically we would employ the following loss function:

$$L = -(y \log f(x) + (1 - y) \log (1 - f(x)))$$

• Under deeply supervised networks, we will use:

$$L_{new} = L + \sum_{j} \alpha_{j} l_{j}$$

auxiliary learning objectives

• Each auxiliary learning objective can be written as:

$$l_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x)))$$

• f_j refers to the network's output after a certain hidden layer j.

• Each auxiliary learning objective can be written as:

$$f_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x)))$$

- f_j refers to the network's output after a certain hidden layer j.
- The differentiation can be done just as it's done with the main learning objective.

• Each auxiliary learning objective can be written as:

$$l_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x)))$$

- f_j refers to the network's output after a certain hidden layer j.
- The differentiation can be done just as it's done with the main learning objective.
- The gradients from different learning objectives are summed in the hidden layers during the back propagation.

• Each auxiliary learning objective can be written as:

$$f_j = -(y \log f_j(x) + (1 - y) \log (1 - f_j(x)))$$

- f_j refers to the network's output after a certain hidden layer j.
- The differentiation can be done just as it's done with the main learning objective
- The gradients from different learning objectives are summed in the hidden layers during the back propagation.
 - Helps to learn more discriminative features
 - Alleviates the vanishing gradient problem

Standard CNN

1 name: "LeNet"	43 layers {
2 layers {	44 name: "conv2"
3 name: "mnist"	45 type: CONVOLUTION
4 type: DATA	46 bottom: "pool1"
5 top: "data"	47 top: "conv2"
6 top: "label"	48 blobs_lr: 1
7 data_param {	49 blobs_lr: 2 50 convolution param {
8 source: "mnist-train-leveldb"	50 convolution_param { 51 num output: 50
9 scale: 0.00390625	52 kernel_size: 5
10 batch_size: 64	53 stride: 1
11 }	54 weight_filler {
12 }	55 type: "xavier"
13 layers {	56 }
14 name: "conv1"	57 bias_filler {
15 type: CONVOLUTION	58 type: "constant"
16 bottom: "data"	59 }
17 top: "conv1"	60 } 61 }
18 blobs_lr: 1	62 layers {
$10 blobs_lr: 2$	63 name: "pool2"
20 convolution_param {	64 type: POOLING
	65 bottom: "conv2"
21 num_output: 20 22 kernel size: 5	66 top: "pool2"
	67 pooling_param {
23 stride: 1	68 pool: MAX
24 weight_filler {	69 kernel_size: 2
25 type: "xavier"	70 stride: 2 71 }
26 }	72 }
27 bias_filler {	73 layers {
28 type: "constant"	74 name: "ip1"
29 }	75 type: INNER_PRODUCT
30 }	76 bottom: "pool2"
31 }	77 top: "ip1"
32 layers {	78 blobs_lr: 1
33 name: "pool1"	79 blobs_lr: 2 80 inner_product_param {
34 type: POOLING	81 num_output: 500
35 bottom: "conv1"	82 weight_filler {
36 top: "pool1"	83 type: "xavier"
37 pooling_param {	84 }
38 pool: MAX	85 bias_filler {
39 kernel_size: 2	86 type: "constant"
40 stride: 2	87 }
41 }	88 } 89 }
42 }	<u> </u>

Standard CNN

73	layers {
74	name: "ip1"
75	type: INNER_PRODUCT
76	bottom: "pool2"
77	top: "ip1"
78	blobs_lr: 1
79	blobs_lr: 2
80	inner_product_param {
81	num_output: 500
82	<pre>weight_filler {</pre>
83	type: "xavier"
84	}
85	<pre>bias_filler {</pre>
86	type: "constant"
87	}
88	}
89 90	}
90 91	layers { name: "relu1"
91	type: RELU
92 93	bottom: "ip1"
94	top: "ip1"
95	}
96	, layers {
97	name: "ip2"
98	type: INNER_PRODUCT
99	bottom: "ip1"
100	top: "ip2"
101	blobs_lr: 1
102	blobs_lr: 2
103	<pre>inner_product_param {</pre>
104	num_output: 10
105	<pre>weight_filler {</pre>
106	type: "xavier"
107	}
108	<pre>bias_filler {</pre>
109	type: "constant"
110	}
111	}
112	}
113	layers {
114	name: "loss"
115	type: SOFTMAX_LOSS
116	bottom: "ip2"
117 118	bottom: "label" }
118	
113	

Standard CNN

Layer that

produces

name: "ip1" type: INNER_PRODUCT bottom: "pool2" top: "ip1" blobs lr: 1 blobs_lr: 2 80 inner_product_param { num_output: 500 weight_filler { type: "xavier" } bias_filler { type: "constant" 87 } } } 90 layers { name: "relu1" type: RELU bottom: "ip1" predictions top: "ip1" 96 layers { name: "ip2" 98 type: INNER_PRODUCT bottom: "ip1" 109 top: "ip2" blobs_lr: 1 blobs_lr: 2 inner_product_param { 104 num_output: 10 weight_filler { type: "xavier" 107 bias_filler { type: "constant" 109 } } 113 layers { name: "loss" type: SOFTMAX_LOSS bottom: "ip2" bottom: "label" }

layers {

73

Standard CNN

73	layers {
74	name: "ip1"
75	type: INNER_PRODUCT
76	bottom: "pool2"
77	top: "ip1"
78	blobs_lr: 1
79	blobs_lr: 2
80	<pre>inner_product_param {</pre>
81	num_output: 500
82	weight_filler {
83	type: "xavier"
84	}
85	bias_filler {
86	type: "constant"
87	}
88	}
89	}
90	layers {
91	name: "relu1"
92	type: RELU
93	bottom: "ip1"
94	top: "ip1"
95	}
96	layers {
97	name: "ip2"
98	type: INNER_PRODUCT
99	bottom: "ip1"
100	top: "ip2"
101	blobs_lr: 1
102	blobs_lr: 2
103	<pre>inner_product_param {</pre>
104	num_output: 10
105	<pre>weight_filler {</pre>
106	type: "xavier"
107	}
108	bias_filler {
109	type: "constant"
110	}
111	}
112	J
113	layers {
114	name: "loss"
115	type: SOFTMAX_LOSS
116	bottom: "ip2"
117	bottom: "label"
118	}
119	

A softmax loss layer

Deeply Supervised CNN

1	name: "LeNet"
2	layers {
3	name: "mnist"
4	type: DATA
5	top: "data"
	top: "label"
7	data_param {
8	source: "mnist-train-leveldb"
	scale: 0.00390625
10	batch_size: 64
11	}
12	}
13	layers {
14	name: "conv1"
15	type: CONVOLUTION
16	bottom: "data"
17	top: "conv1"
18	blobs_lr: 1
19	blobs_lr: 2
20	convolution_param {
21	num_output: 20
22	kernel_size: 5
23	stride: 1
24	<pre>weight_filler {</pre>
25	type: "xavier"
26	}
27	<pre>bias_filler {</pre>
28 29	type: "constant"
29 30	}
30 31	}
32	/ layers {
33	name: "pool1"
34	type: POOLING
35	bottom: "conv1"
36	top: "pool1"
37	pooling_param {
38	pool: MAX
39	kernel_size: 2
40	stride: 2
41	}
42	}

44	layers {
45	name: "ip1_side"
46	type: INNER_PRODUCT
47	bottom: "pool1"
48	top: "ip1_side"
49	blobs_lr: 1
50	blobs_lr: 2
51	<pre>inner_product_param {</pre>
52	num_output: 10
53	<pre>weight_filler {</pre>
54	type: "xavier"
55	}
56	<pre>bias_filler {</pre>
57	type: "constant"
58	}
59	}
60	}
61	layers {
62	name: "l1"
63	type: SOFTMAX_LOSS
64	<pre>bottom: "ip1_side"</pre>
65	bottom: "label"
66	}
67	

Deeply Supervised CNN

A side layer that produces predictions

	name: "LeNet"
2	layers {
	name: "mnist"
4	type: DATA
5	top: "data"
	top: "label"
7	data_param {
8	source: "mnist-train-leveldb"
	scale: 0.00390625
10	batch_size: 64
11	}
12	}
13	layers {
14	name: "conv1"
15	type: CONVOLUTION
16	bottom: "data"
17	top: "conv1"
18	blobs_lr: 1 blobs_lr: 2
19	blobs_lr: 2
20	convolution_param {
21	num_output: 20
22	kernel_size: 5
23	stride: 1
24	<pre>weight_filler {</pre>
25	type: "xavier"
26	}
27	<pre>bias_filler {</pre>
28	type: "constant"
29	}
30	}
31	}
32	layers {
33	name: "pool1"
34	type: POOLING
35	bottom: "conv1"
36	top: "pool1"
37	pooling_param {
38	pool: MAX
39	kernel_size: 2
40	stride: 2
41	}
42	

44	layers {	
45	<pre>name: "ip1_side"</pre>	
46	type: INNER_PRODUCT	
47	bottom: "pool1"	
48	top: "ip1_side"	
49	blobs_lr: 1	
50	blobs_lr: 2	
51	<pre>inner_product_param {</pre>	
52	num_output: 10	
53	<pre>weight_filler {</pre>	
54	type: "xavier"	
55	}	
56	<pre>bias_filler {</pre>	
57	type: "constant"	
58	}	
59	}	
60	}	
61	layers {	
62	name: "l1"	
63	type: SOFTMAX_LOSS	
64	<pre>bottom: "ip1_side"</pre>	
65	bottom: "label"	
66	}	
67		

Deeply Supervised CNN

1	name: "LeNet"
2	layers {
	name: "mnist"
4	type: DATA
5	top: "data"
	top: "label"
7	data_param {
8	source: "mnist-train-leveldb"
	scale: 0.00390625
10	batch_size: 64
11	}
12	}
13	layers {
14	name: "conv1"
15	type: CONVOLUTION
16	bottom: "data"
17	top: "conv1"
18	blobs_lr: 1 blobs_lr: 2
19	blobs_lr: 2
20	<pre>convolution_param {</pre>
21	num_output: 20
22	kernel_size: 5
23	stride: 1
24	<pre>weight_filler {</pre>
25	type: "xavier"
26	}
27	<pre>bias_filler {</pre>
28	type: "constant"
29	}
30	}
31	}
32	layers {
33	name: "pool1"
34	type: POOLING
35	bottom: "conv1"
36	top: "pool1"
37	<pre>pooling_param {</pre>
38	pool: MAX
39	kernel_size: 2
40	stride: 2
41 42	} }
42	

44	layers {	
45	name: "ip1_side"	
46	type: INNER_PRODUCT	
47	bottom: "pool1"	
48	top: "ip1_side"	
49	blobs_lr: 1	
50	blobs_lr: 2	
51	inner_product_param	{
52	num_output: 10	
53	<pre>weight_filler {</pre>	
54	type: "xavier"	
55	}	
56	<pre>bias_filler {</pre>	
57	type: "constant	•
58	}	
59	}	
60 61	i layers {	
62	name: "l1"	
63	type: SOFTMAX_LOSS	
64	bottom: "ip1_side"	
65	bottom: "label"	
66	}	
67	,	
		\mathbf{X}
	4	An auxiliary
		loss function
		loss function

Some interesting results:

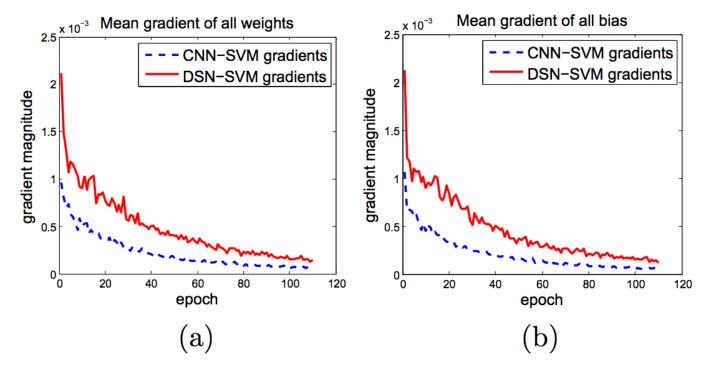


Figure 3: Average absolute value of gradient matrices during the training on MNIST for (a) weights; (b) biases.

Some interesting results:

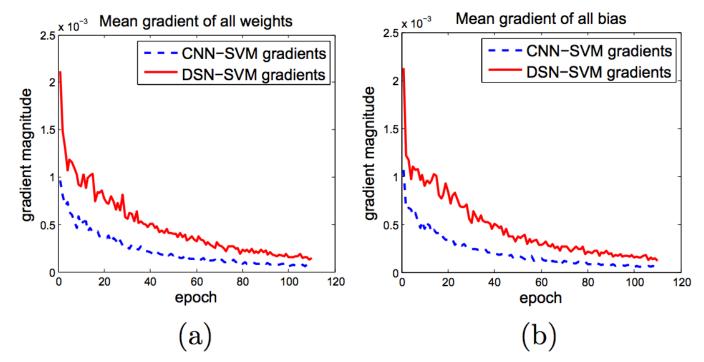
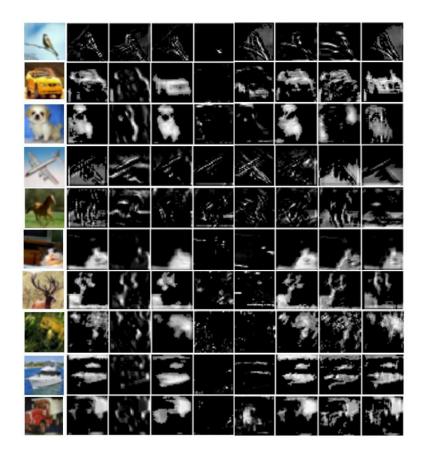
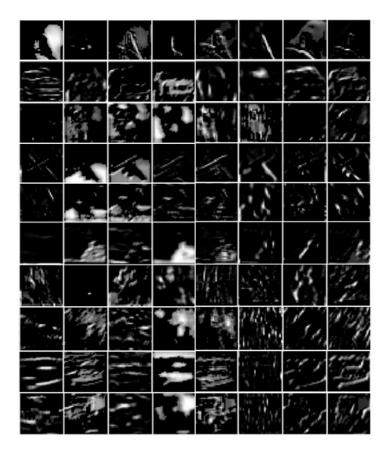


Figure 3: Average absolute value of gradient matrices during the training on MNIST for (a) weights; (b) biases.

 Deep supervision helps to reduce the vanishing gradient problem!

Some interesting results:



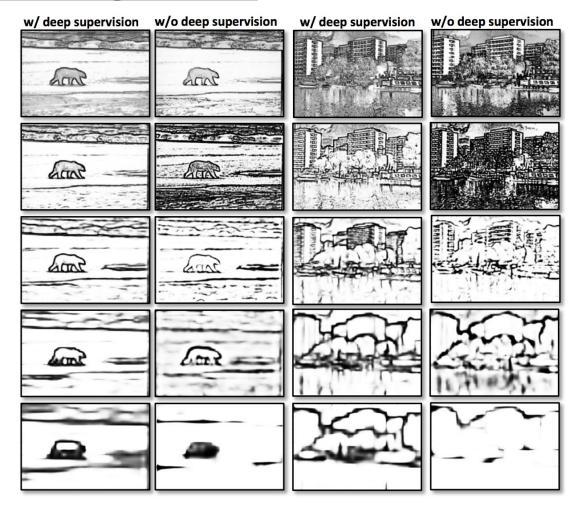


(a) by DSN

(b) by CNN

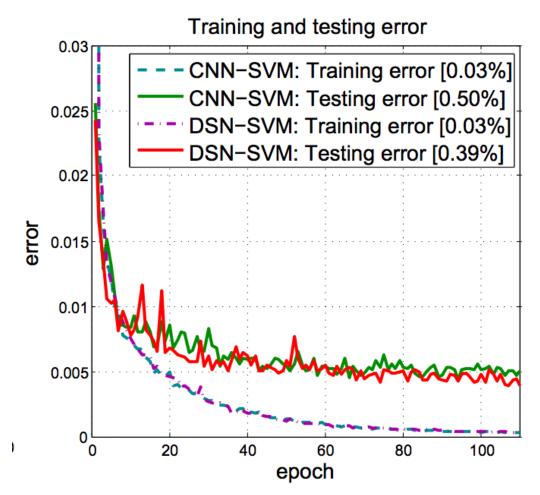
Learned features are more discriminative

Some interesting results:

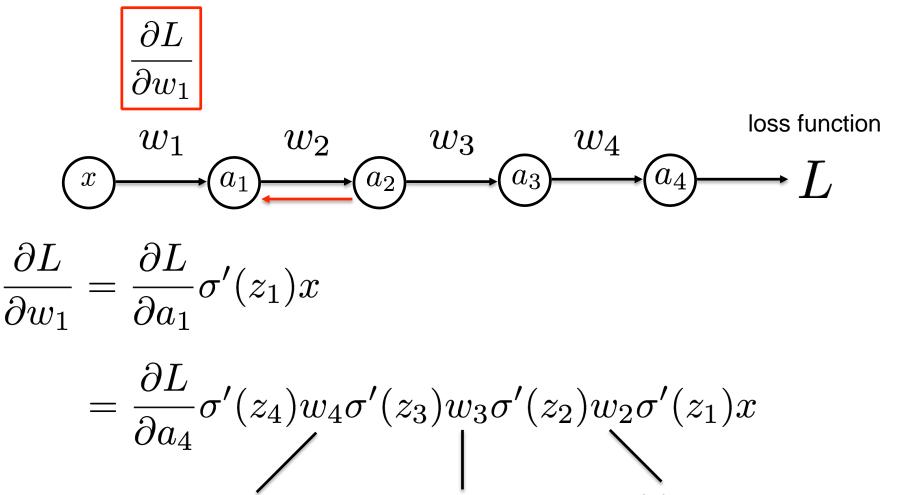


Learned features are more discriminative

Some interesting results:



 Deep supervision reduces testing error without overfitting the training data.

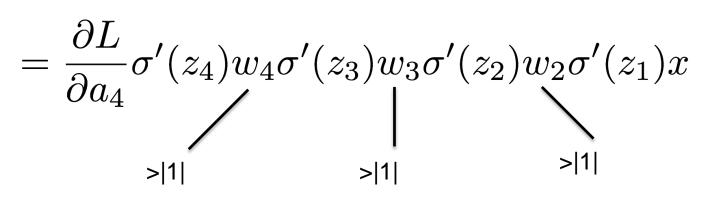


>|1|

>|1

>|1|

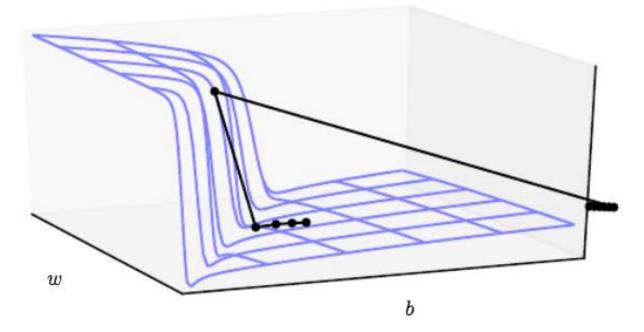
Exploding Gradients ∂L ∂w_1 loss function w_4 w_2 w_3 w_1 a_4 a_2 a_3 a_1 ${\boldsymbol{x}}$ $\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a_1} \sigma'(z_1) x$



An instance of exploding gradients

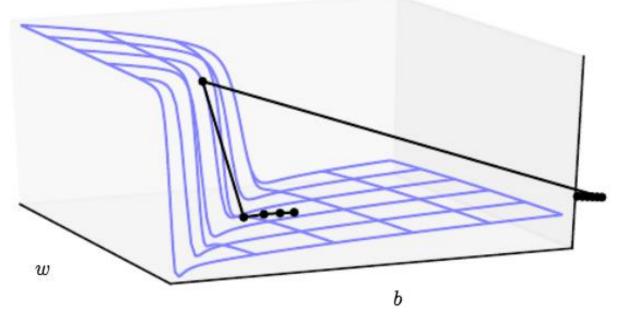
Exploding gradients:

- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.



Exploding gradients:

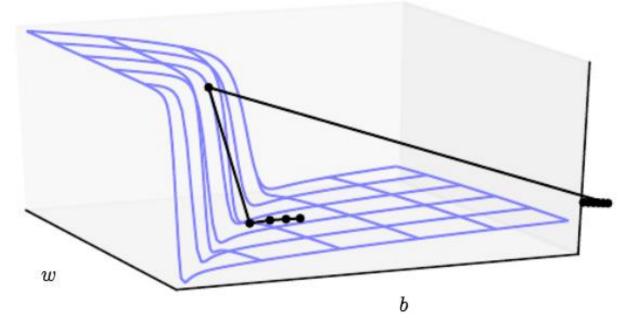
- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.



Solution #1: reduce the learning rate

Exploding gradients:

- One of the most often occurring learning problems.
- Due to large jumps parameter update becomes extremely unstable.



- Solution #1: reduce the learning rate
- Solution #2: clip the gradients

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.

Other ways to speed-up the training:

- Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.
- We can accelerate the learning using the momentum method.

Other ways to speed-up the training:

- Even if we address the vanishing gradient problem, the stochastic gradient descent (SGD) optimization is still quite slow.
- We can accelerate the learning using the momentum method.
- The momentum method introduces a speed variable, that keeps track of the direction and speed at which the parameters move through the parameter space.

Standard gradient descent:

• Learning rule:

$$\theta = \theta - \epsilon \frac{\partial L}{\partial w}$$

Standard gradient descent:

• Learning rule:

$$\theta = \theta - \epsilon \frac{\partial L}{\partial w}$$

Gradient descent with momentum:

• Learning rule:

$$v = \alpha v - \epsilon \frac{\partial L}{\partial w}$$

Standard gradient descent:

• Learning rule:

$$\theta = \theta - \epsilon \frac{\partial L}{\partial w}$$

Gradient descent with momentum:

• Learning rule:

$$v = \alpha v - \epsilon \frac{\partial L}{\partial w}$$
$$\theta = \theta + v$$

Standard gradient descent:

• Learning rule:

$$\theta = \theta - \epsilon \frac{\partial L}{\partial w}$$

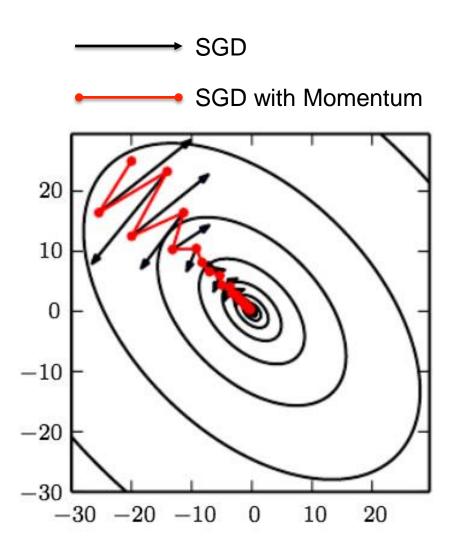
Gradient descent with momentum:

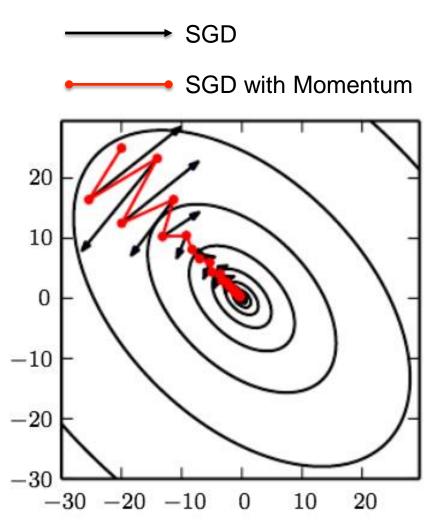
• Learning rule:

$$v = \alpha v - \epsilon \frac{\partial L}{\partial w}$$

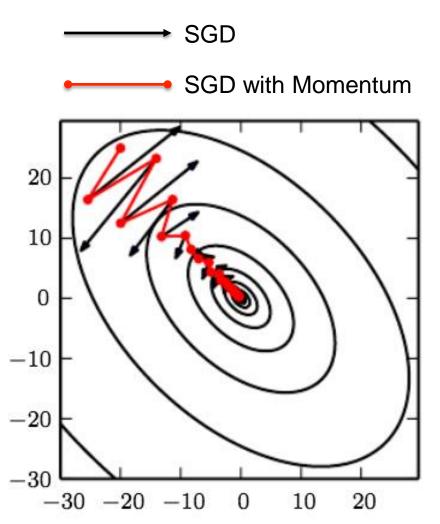
$$\theta = \theta + v$$

• Makes it more difficult for the parameters to fluctuate a lot, which makes learning more stable





Momentum helps to achieve more direct path towards local minimum



- Momentum helps to achieve more direct path towards local minimum
- Therefore, learning becomes faster.

Batch Normalization

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by randomly selecting N samples from the training dataset, and averaging the gradient across them during backprop).

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by randomly selecting N samples from the training dataset, and averaging the gradient across them during backprop).

<u>Issues:</u>

- Samples in different batches can be very different.
- Small changes to the network parameters amplify as the network becomes deeper
- This changes the internal node distribution in many layers.
- The layers need to continuously adapt to this new internal node distribution, which slows down the training.

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ, β Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize

What's wrong with this approach?

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize

What happens if we normalize the inputs to the sigmoid function?

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize

- What happens if we normalize the inputs to the sigmoid function?
- We may lose representational power (e.g. ability to represent nonlinear functions

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Scaling and shifting restores the original representational power.

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to have zero-mean and the variance of 1.

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

- Scaling and shifting restores the original representational power.
- Two parameters gamma and beta learned during training.

Backpropagation:

 Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

> **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma, \beta}(x_i)$ // scale and shift

Backpropagation:

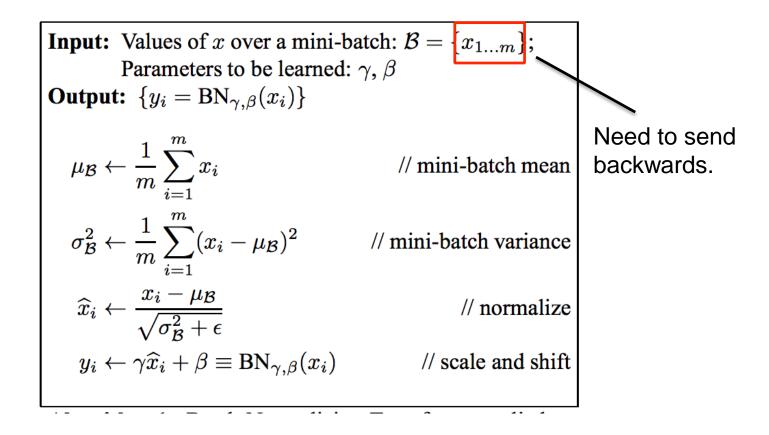
 Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

> **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow rac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

Which gradients do we need to compute during a backward pass?

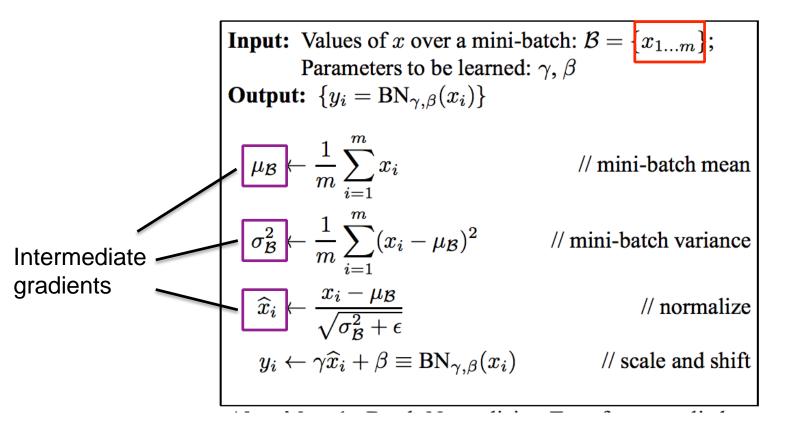
Backpropagation:

 Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



Backpropagation:

 Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



Backpropagation:

 Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.

> **Input:** Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\frac{1}{m}\sum_{i=1}^{m}x_{i}$ $\mu_{\mathcal{B}}$ // mini-batch mean $\frac{1}{m}\sum_{i=1}^{m}(x_i-\mu_{\mathcal{B}})^2$ // mini-batch variance \widehat{x}_{i} // normalize $\beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift Parameter gradients

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Intermediate gradients:

$$\frac{\partial \ell}{\partial \widehat{x}_i} = \frac{\partial \ell}{\partial y_i} \cdot \gamma$$

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Intermediate gradients:

$$\frac{\frac{\partial \ell}{\partial \widehat{x}_i} = \frac{\partial \ell}{\partial y_i} \cdot \gamma}{\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} = \sum_{i=1}^m \frac{\partial \ell}{\partial \widehat{x}_i} \cdot (x_i - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^2 + \epsilon)^{-3/2}}$$

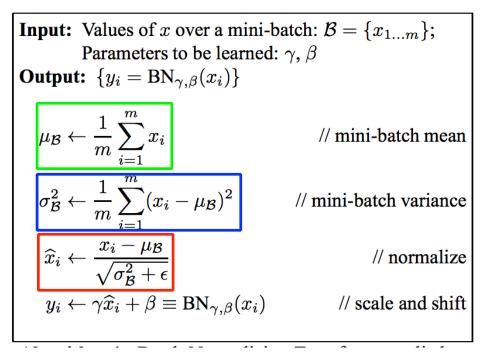
Input: Values of x over a mini-batch:
$$\mathcal{B} = \{x_{1...m}\}$$
;
Parameters to be learned: γ, β
Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$
 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean
 $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance
 $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize
 $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Intermediate gradients:

$$\frac{\partial \ell}{\partial \hat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \hat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \hat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$



Gradient to send backwards:

$$\frac{\partial \ell}{\partial x_i} = \frac{\partial \ell}{\partial \widehat{x}_i} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^2} \cdot \frac{2(x_i - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

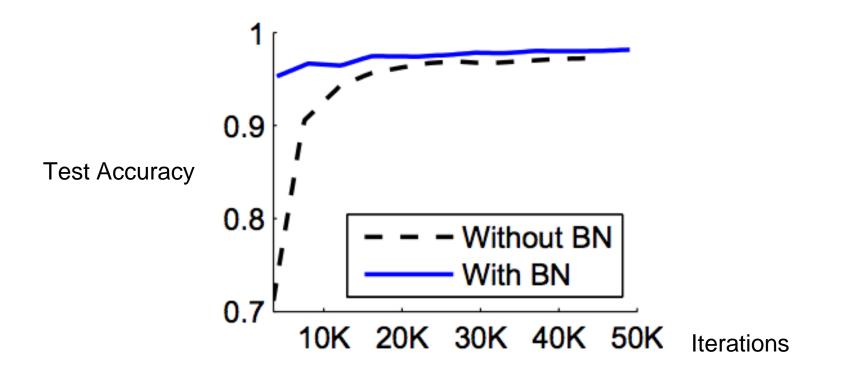
Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Parameter gradients:

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i} \cdot \widehat{x}_i$$
$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_i}$$

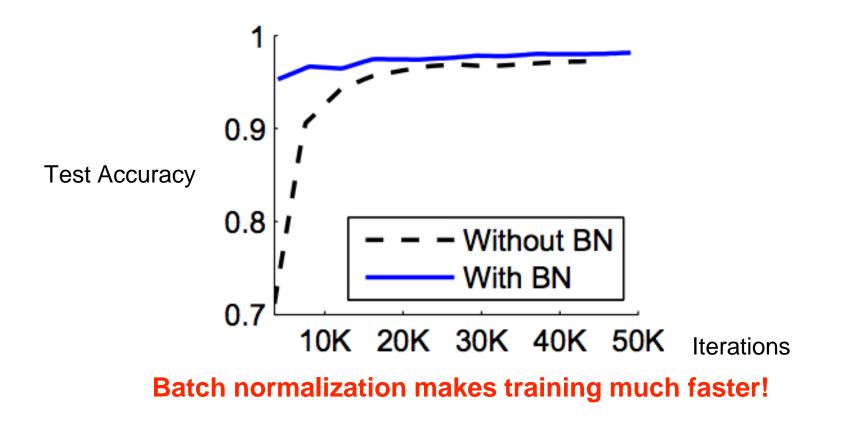
Batch Normalization:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



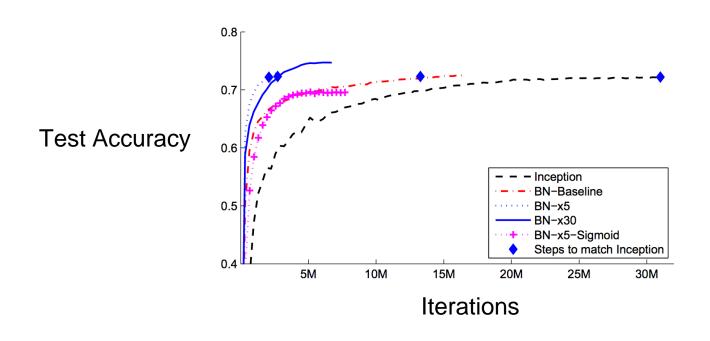
Batch Normalization:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



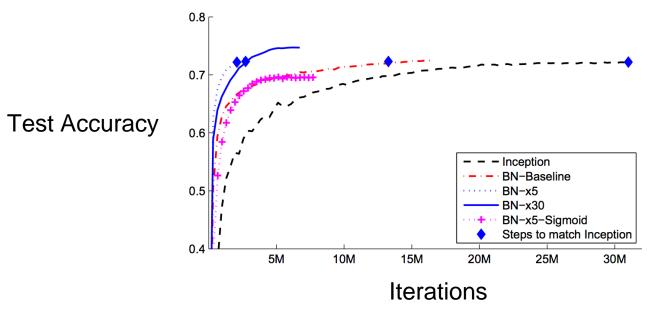
Batch Normalization:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



Batch Normalization:

• Unlike many other normalization schemes, batch normalization can be easily incorporated into backprop.



Batch normalization makes training much faster!

Summary

Key Take-Aways:

- Specifying the right loss (e.g. cross entropy) is important.
- Picking the right activation function (e.g. RELU) is also imperative.
- We can reduce vanishing gradient problem via deep supervision.
- Reducing the learning rate, and clipping gradients helps to prevent exploding gradient problem.
- Momentum methods allow faster and more stable learning.
- Batch normalization significantly speeds up the training.