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Neural Network Learning

How do we better understanding various properties 

behind the learning process in neural nets?
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How to Improve NN Learning?

Loss / Cost function:

• Loss function defines what we want the neural network to 
learn.

• Humans learn best when they get feedback after being 
very wrong (e.g. a person learns to avoid scams after the 
first time he/she was scammed).

• Does the same learning trend apply to neural networks? If 
not we want to design a loss function with such learning 
characteristics.
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How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

• No sigmoid derivatives in the gradient!

• Therefore, learning shouldn’t be slowed down.
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Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the 

vanishing gradient problem.

derivatives are small derivatives are small

derivative is constant
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• The network that uses a RELU activation function learns 

significantly faster.
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Vanishing Gradients

Learning Speed:

• It turns out that even using RELU activation function doesn’t 

completely eliminate the vanishing gradient problem.

• The key question is why the vanishing gradient problem still 

persists.

• To understand this we need to revisit the original back 

propagation algorithm.



Backpropagation

1. Let                      , where n denotes the number of 

layers in the network.

2. For each fully connected layer   :

• For each node     in layer    set: 

• Compute partial derivatives:

• Update the parameters:
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• Weights are typically initialized to small values (e.g. 

gaussian distribution with 0 mean and 0.01 std dev)
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~|0.01| ~|0.01| ~|0.01|

• Exponential decrease in the gradient as we move towards 

the early hidden layers.

Vanishing Gradients



loss function

• As a result, the deepest hidden layers learn significantly faster, 

relative to the early layers that may not learn much at all.

~|0.01| ~|0.01| ~|0.01|

Vanishing Gradients
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Deep Supervision

• We can reduce the vanishing gradient problem and make 

learning more effective via deep supervision.

• Deep supervision refers to a concept of adding learning 

objectives / loss functions to the intermediate hidden 

layers.

• Backpropagation proceeds as usual, but now the 

gradients are propagated not from one but from multiple 

loss layers.
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Deep Supervision

• Each auxiliary learning objective can be written as:

• refers to the network’s output after a certain hidden 

layer j.

• The differentiation can be done just as it’s done with 

the main learning objective

• The gradients from different learning objectives are 

summed in the hidden layers during the back 

propagation.
• Helps to learn more discriminative features

• Alleviates the vanishing gradient problem
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• Deeply Supervised CNN

An auxiliary 

loss function

Deep Supervision
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Some interesting results:

Deep Supervision

• Deep supervision reduces testing error without overfitting the 

training data.
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Exploding Gradients

Exploding gradients:

• One of the most often occurring learning problems.

• Due to large jumps parameter update becomes extremely 

unstable.

• Solution #1: reduce the learning rate

• Solution #2: clip the gradients
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Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the 

stochastic gradient descent (SGD) optimization is still 

quite slow.

• We can accelerate the learning using the momentum 

method.

• The momentum method introduces a speed variable, that 

keeps track of  the direction and speed at which the 

parameters move through the parameter space.
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Momentum

Standard gradient descent:

• Learning rule:

Gradient descent with momentum:

• Learning rule:

• Makes it more difficult for the parameters to fluctuate 

a lot, which makes learning more stable
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SGD with Momentum

SGD

• Momentum helps to achieve more direct path towards local minimum

• Therefore, learning becomes faster.
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Batch Normalization

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by 

randomly selecting N samples from the training dataset, 

and averaging the gradient across them during backprop).

Issues:

• Samples in different batches can be very different.

• Small changes to the network parameters amplify as the 

network becomes deeper

• This changes the internal node distribution in many layers.

• The layers need to continuously adapt to this new internal 

node distribution, which slows down the training.
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Batch Normalization

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to 

have zero-mean and the variance of 1.

• What happens if we normalize the inputs to the sigmoid function?

• We may lose representational power (e.g. ability to represent non-

linear functions
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Batch Normalization

• Scaling and shifting restores the original representational power.

• Two parameters gamma and beta learned during training.

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to 

have zero-mean and the variance of 1.
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Summary
Key Take-Aways:

• Specifying the right loss (e.g. cross entropy) is important.

• Picking the right activation function (e.g. RELU) is also 
imperative.

• We can reduce vanishing gradient problem via deep supervision.

• Reducing the learning rate, and clipping gradients helps to 
prevent exploding gradient problem.

• Momentum methods allow faster and more stable learning.

• Batch normalization significantly speeds up the training.


