
Improving Learning in Neural Networks

CIS 680

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- max pooling layer - sigmoid function - softmax function

1.

A Penguin

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

1.

2.

A Penguin

- max pooling layer

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

1.

2.

3.

A Penguin

- max pooling layer

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

1.

2.

3.

4.

A Penguin

- max pooling layer

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

Predicted probabilities, which

class this image belongs to

A Penguin

- max pooling layer

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function

How to learn the parameters from the data?

- softmax function

A Penguin

- max pooling layer

Backpropagation

1. Compute the gradients of the overall

loss and propagate it back:

True Label

Backpropagation

2. Compute the gradients

to adjust the weights:
where

True Label

Backpropagation

3. Backpropagate the

gradients to previous layers:
where

True Label

Forward:

Fully Connected Layers:

Activation unit of interestForward:

Fully Connected Layers:

Activation unit of interest

The weight that is used in

conjunction with the

activation unit of interest

The output

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Backpropagation

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

A measure how much an activation

unit contributed to the loss

Backward:Forward:

Fully Connected Layers:

A measure how much an activation

unit contributed to the loss

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backpropagation

4. Compute the gradients

to adjust the weights:
where

True Label

Backpropagation

5. Backpropagate

the gradients to

previous layers:

where

True Label

Backpropagation

6. Compute the gradients

to adjust the weights:
where

True Label

Backpropagation

7. Backpropagate

the gradients to

previous layers:

where

True Label

Forward:

Convolutional Layers:

1l l la g z  () () ()

 

Forward:

Convolutional Layers:

1l l la g z  () () ()

 

Forward:

Convolutional Layers:

1l l la g z  () () ()

 

Backpropagation

8. Compute the gradients

to adjust the weights:
where

True Label

Neural Network Learning

Neural Network Learning

How do we better understanding various properties

behind the learning process in neural nets?

How to Improve NN Learning?

Loss / Cost function:

• Loss function defines what we want the neural network to

learn.

How to Improve NN Learning?

Loss / Cost function:

• Loss function defines what we want the neural network to

learn.

How do we select a good loss function?

How to Improve NN Learning?

Loss / Cost function:

• Loss function defines what we want the neural network to

learn.

• Humans learn best when they get feedback after being

very wrong (e.g. a person learns to avoid scams after the

first time he/she was scammed).

How to Improve NN Learning?

Loss / Cost function:

• Loss function defines what we want the neural network to
learn.

• Humans learn best when they get feedback after being
very wrong (e.g. a person learns to avoid scams after the
first time he/she was scammed).

• Does the same learning trend apply to neural networks? If
not we want to design a loss function with such learning
characteristics.

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

ground truthNN prediction

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

why is the learning slow initially?

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

derivatives are very small

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

the so called vanishing

gradient problem!

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

How do we address this problem?

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

We need a learning objective that

wouldn’t have a sigmoid derivative in

the gradient.

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• First, let’s examine a commonly used L2 loss objective:

We want the following gradient:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

where &

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

where &

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

where &

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

where &

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

Let

where &

We just derived a cross-

entropy loss function!

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• Now let’s examine a cross-entropy loss objective:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• Now let’s examine a cross-entropy loss objective:

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• Now let’s examine a cross-entropy loss objective:

the learning is much

faster initially now

How to Improve NN Learning?

Loss / Cost function:

• Consider a neural network consisting of a single hidden

neuron:

• Now let’s examine a cross-entropy loss objective:

no sigmoid derivatives in the gradient equation

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

where

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

where

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

where

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

where

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

• No sigmoid derivatives in the gradient!

How to Improve NN Learning?

Loss / Cost function:

• How about the softmax loss function?

• No sigmoid derivatives in the gradient!

• Therefore, learning shouldn’t be slowed down.

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Vanishing Gradients

• Did we solve the vanishing gradient problem?

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Vanishing Gradients

derivatives are very small

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Vanishing Gradients

How can we fix this?

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Vanishing Gradients

Replace the sigmoid activation function!

Vanishing Gradients

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

Vanishing Gradients

Sigmoid Function Hyperbolic Tangent RELU

Activation function requirements:

• We want the activation function to be non-linear.

• We want the activation function to be differentiable.

• We want an activation function that eliminates the

vanishing gradient problem.

derivatives are small derivatives are small

derivative is constant

Vanishing Gradients

Learning Speed:

• The network that uses a RELU activation function learns

significantly faster.

RELU

Sigmoid

Vanishing Gradients

Learning Speed:

• The network that uses a RELU activation function learns

significantly faster.

Training is significantly faster when using the RELU function

RELU

Sigmoid

Vanishing Gradients

Learning Speed:

• The network that uses a RELU activation function learns

significantly faster.

Does this mean the problem of vanishing gradients

is completely solved?

RELU

Sigmoid

Vanishing Gradients

Learning Speed:

• It turns out that even using RELU activation function doesn’t

completely eliminate the vanishing gradient problem.

• The key question is why the vanishing gradient problem still

persists.

• To understand this we need to revisit the original back

propagation algorithm.

Backpropagation

1. Let , where n denotes the number of

layers in the network.

2. For each fully connected layer :

• For each node in layer set:

• Compute partial derivatives:

• Update the parameters:

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

Vanishing Gradients

loss function

~|0.01| ~|0.01| ~|0.01|

• Weights are typically initialized to small values (e.g.

gaussian distribution with 0 mean and 0.01 std dev)

Vanishing Gradients

loss function

~|0.01| ~|0.01| ~|0.01|

• Exponential decrease in the gradient as we move towards

the early hidden layers.

Vanishing Gradients

loss function

• As a result, the deepest hidden layers learn significantly faster,

relative to the early layers that may not learn much at all.

~|0.01| ~|0.01| ~|0.01|

Vanishing Gradients

Deep Supervision

• We can reduce the vanishing gradient problem and make

learning more effective via deep supervision.

Deep Supervision

• We can reduce the vanishing gradient problem and make

learning more effective via deep supervision.

• Deep supervision refers to a concept of adding learning

objectives / loss functions to the intermediate hidden

layers.

Deep Supervision

• We can reduce the vanishing gradient problem and make

learning more effective via deep supervision.

• Deep supervision refers to a concept of adding learning

objectives / loss functions to the intermediate hidden

layers.

• Backpropagation proceeds as usual, but now the

gradients are propagated not from one but from multiple

loss layers.

Standard CNN:

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Deep Supervision

Standard CNN:

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

Deep Supervision

main learning

objective

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

A Penguin A Penguin A Penguin

Deep Supervision

Deeply Supervised CNN:

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

A Penguin A Penguin A Penguin

Deep Supervision

Deeply Supervised CNN:

auxiliary learning

objectives

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

A Penguin A Penguin A Penguin

Deep Supervision

Deeply Supervised CNN:

gradient flow

during backprop

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- sigmoid function - softmax function

A Penguin

- max pooling layer

A Penguin A Penguin A Penguin

Deep Supervision

Deeply Supervised CNN:

gradient flow

during backprop

Deep Supervision

• Assume that we are a given a labeled training dataset

• Typically we would employ the following loss function:

Deep Supervision

• Assume that we are a given a labeled training dataset

• Typically we would employ the following loss function:

• Under deeply supervised networks, we will use:

Deep Supervision

• Assume that we are a given a labeled training dataset

• Typically we would employ the following loss function:

• Under deeply supervised networks, we will use:

auxiliary learning

objectives

Deep Supervision

• Each auxiliary learning objective can be written as:

• refers to the network’s output after a certain hidden

layer j.

Deep Supervision

• Each auxiliary learning objective can be written as:

• refers to the network’s output after a certain hidden

layer j.

• The differentiation can be done just as it’s done with

the main learning objective.

Deep Supervision

• Each auxiliary learning objective can be written as:

• refers to the network’s output after a certain hidden

layer j.

• The differentiation can be done just as it’s done with

the main learning objective.

• The gradients from different learning objectives are

summed in the hidden layers during the back

propagation.

Deep Supervision

• Each auxiliary learning objective can be written as:

• refers to the network’s output after a certain hidden

layer j.

• The differentiation can be done just as it’s done with

the main learning objective

• The gradients from different learning objectives are

summed in the hidden layers during the back

propagation.
• Helps to learn more discriminative features

• Alleviates the vanishing gradient problem

• Standard CNN

Deep Supervision

• Standard CNN

Deep Supervision

• Standard CNN

Layer that

produces

predictions

Deep Supervision

A softmax loss

layer

• Standard CNN

Deep Supervision

• Deeply Supervised CNN

Deep Supervision

• Deeply Supervised CNN A side layer

that produces

predictions

Deep Supervision

• Deeply Supervised CNN

An auxiliary

loss function

Deep Supervision

Some interesting results:

Deep Supervision

Some interesting results:

Deep Supervision

• Deep supervision helps to reduce the vanishing gradient

problem!

Some interesting results:

Deep Supervision

• Learned features are more discriminative

Some interesting results:

Deep Supervision

• Learned features are more discriminative

Some interesting results:

Deep Supervision

• Deep supervision reduces testing error without overfitting the

training data.

Exploding Gradients

loss function

>|1| >|1| >|1|

Exploding Gradients

loss function

>|1| >|1| >|1|

• An instance of exploding gradients

Exploding Gradients

Exploding gradients:

• One of the most often occurring learning problems.

• Due to large jumps parameter update becomes extremely

unstable.

Exploding Gradients

Exploding gradients:

• One of the most often occurring learning problems.

• Due to large jumps parameter update becomes extremely

unstable.

• Solution #1: reduce the learning rate

Exploding Gradients

Exploding gradients:

• One of the most often occurring learning problems.

• Due to large jumps parameter update becomes extremely

unstable.

• Solution #1: reduce the learning rate

• Solution #2: clip the gradients

Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the

stochastic gradient descent (SGD) optimization is still

quite slow.

Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the

stochastic gradient descent (SGD) optimization is still

quite slow.

• We can accelerate the learning using the momentum

method.

Momentum

Other ways to speed-up the training:

• Even if we address the vanishing gradient problem, the

stochastic gradient descent (SGD) optimization is still

quite slow.

• We can accelerate the learning using the momentum

method.

• The momentum method introduces a speed variable, that

keeps track of the direction and speed at which the

parameters move through the parameter space.

Momentum

Standard gradient descent:

• Learning rule:

Momentum

Standard gradient descent:

• Learning rule:

Gradient descent with momentum:

• Learning rule:

Momentum

Standard gradient descent:

• Learning rule:

Gradient descent with momentum:

• Learning rule:

Momentum

Standard gradient descent:

• Learning rule:

Gradient descent with momentum:

• Learning rule:

• Makes it more difficult for the parameters to fluctuate

a lot, which makes learning more stable

Momentum

SGD with Momentum

SGD

Momentum

SGD with Momentum

SGD

• Momentum helps to achieve more direct path towards local minimum

Momentum

SGD with Momentum

SGD

• Momentum helps to achieve more direct path towards local minimum

• Therefore, learning becomes faster.

Batch Normalization

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by

randomly selecting N samples from the training dataset,

and averaging the gradient across them during backprop).

Batch Normalization

Batch Training Mode:

• SGD training is typically done in batch mode (e.g. by

randomly selecting N samples from the training dataset,

and averaging the gradient across them during backprop).

Issues:

• Samples in different batches can be very different.

• Small changes to the network parameters amplify as the

network becomes deeper

• This changes the internal node distribution in many layers.

• The layers need to continuously adapt to this new internal

node distribution, which slows down the training.

Batch Normalization

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

Batch Normalization

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

What’s wrong with this approach?

Batch Normalization

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

What happens if we normalize the inputs to the sigmoid function?

Batch Normalization

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

• What happens if we normalize the inputs to the sigmoid function?

• We may lose representational power (e.g. ability to represent non-

linear functions

Batch Normalization

• Scaling and shifting restores the original representational power.

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

Batch Normalization

• Scaling and shifting restores the original representational power.

• Two parameters gamma and beta learned during training.

Batch Normalization:

• In every layer, normalize each feature in the mini-batch to

have zero-mean and the variance of 1.

Batch Normalization
Backpropagation:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Batch Normalization
Backpropagation:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Which gradients do we need to compute during a backward pass?

Batch Normalization
Backpropagation:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Need to send

backwards.

Batch Normalization
Backpropagation:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Intermediate

gradients

Batch Normalization
Backpropagation:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Parameter

gradients

Batch Normalization

Intermediate gradients:

Batch Normalization

Intermediate gradients:

Batch Normalization

Intermediate gradients:

Batch Normalization

Gradient to send backwards:

Batch Normalization

Parameter gradients:

Batch Normalization

Batch Normalization:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Test Accuracy

Iterations

Batch Normalization

Batch Normalization:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Batch normalization makes training much faster!

Test Accuracy

Iterations

Batch Normalization

Batch Normalization:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Test Accuracy

Iterations

Batch Normalization

Batch Normalization:

• Unlike many other normalization schemes, batch

normalization can be easily incorporated into backprop.

Batch normalization makes training much faster!

Test Accuracy

Iterations

Summary
Key Take-Aways:

• Specifying the right loss (e.g. cross entropy) is important.

• Picking the right activation function (e.g. RELU) is also
imperative.

• We can reduce vanishing gradient problem via deep supervision.

• Reducing the learning rate, and clipping gradients helps to
prevent exploding gradient problem.

• Momentum methods allow faster and more stable learning.

• Batch normalization significantly speeds up the training.

