
Convolutional Neural Networks

Books
» http://www.deeplearningbook.org/

Books
http://neuralnetworksanddeeplearning.com/.org/

reviews

» http://www.deeplearningbook.org/contents/linear_algebra.html

» http://www.deeplearningbook.org/contents/prob.html

» http://www.deeplearningbook.org/contents/numerical.html

http://www.deeplearningbook.org/contents/linear_algebra.html
http://www.deeplearningbook.org/contents/prob.html
http://www.deeplearningbook.org/contents/numerical.html

Input: Output:

Goal: Given an image, we want to identify what class

that image belongs to.

Input

Output
Convolutional Neural Network (CNN)

Pipeline:

A Monitor

Convolutional Neural Nets (CNNs) in a nutshell:

• A typical CNN takes a raw RGB image as an input.

• It then applies a series of non-linear operations on top

of each other.

• These include convolution, sigmoid, matrix

multiplication, and pooling (subsampling) operations.

• The output of a CNN is a highly non-linear function of

the raw RGB image pixels.

How the key operations are encoded in standard CNNs:

• Convolutional Layers: 2D Convolution

• Fully Connected Layers: Matrix Multiplication

• Sigmoid Layers: Sigmoid function

• Pooling Layers: Subsampling

2D convolution:

- convolutional weights of size MxN

- the values in a 2D grid that we want to convolve

A sliding window operation across the entire grid .

h f g

0 0

M N

ij

m n

h f i m j n g m n

 (,) (,)

0 0 0

0 1 0

0 0 0

0.107 0.113 0.107

0.113 0.119 0.113

0.107 0.113 0.107

-1 0 1

-2 0 2

-1 0 1

Unchanged Image Blurred Image Vertical Edges

1
f g 2

f g
3

f g

0 0 0

0 1 0

0 0 0

0.107 0.113 0.107

0.113 0.119 0.113

0.107 0.113 0.107

-1 0 1

-2 0 2

-1 0 1

CNNs aim to learn convolutional weights directly from the data

Input: Convolutional Neural Network (CNN)

Early layers learn to detect low level structures such as

oriented edges, colors and corners

Input: Convolutional Neural Network (CNN)

Deep layers learn to detect high-level object structures and their parts.

A Closer Look inside the Convolutional Layer

A Chair Filter

A Person Filter

A Table Filter

A Cupboard Filter

Input Image

Fully Connected Layers:

Fully Connected Layers:

matrix multiplication

Max Pooling Layer:

• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the

current window.

1 2 3

4 5 6

7 8 9

Max Pooling Layer:

5

• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the

current window.

1 2 3

4 5 6

7 8 9

Max Pooling Layer:

5 6

• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the

current window.

1 2 3

4 5 6

7 8 9

Max Pooling Layer:

5 6

8 9

• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the

current window.

1 2 3

4 5 6

7 8 9

Sigmoid Layer:

• Applies a sigmoid function on an input

Let us now consider a CNN with a specific architecture:

• 2 convolutional layers.

• 2 pooling layers.

• 2 fully connected layers.

• 3 sigmoid layers.

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Convolutional Networks

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

Final Predictions

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

Convolutional layer parameters in layers 1 and 2

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

Fully connected layer parameters in the fully

connected layers 1 and 2

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

1.

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

1.

2.

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

1.

2.

3.

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer

1.

2.

3.

4.

- sigmoid function - softmax function

Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function

Key Question: How to learn the parameters from the data?

- softmax function

Backpropagation

for

Convolutional Neural Networks

How to learn the parameters of a CNN?

• Assume that we are a given a labeled training dataset

• We want to adjust the parameters of a CNN such that

CNN’s predictions would be as close to true labels as

possible.

• This is difficult to do because the learning objective is

highly non-linear.

Prediction True Label

Gradient descent:

• Iteratively minimizes the objective function.

• The function needs to be differentiable.

Gradient descent:

• Iteratively minimizes the objective function.

• The function needs to be differentiable.

Gradient descent:

• Iteratively minimizes the objective function.

• The function needs to be differentiable.

Gradient descent:

• Iteratively minimizes the objective function.

• The function needs to be differentiable.

1. Compute the gradients of the overall loss

w.r.t. to our predictions and propagate it back:

True Label

2. Compute the gradients of the overall

loss and propagate it back:

True Label

3. Compute the gradients

to adjust the weights:

True Label

4. Backpropagate the

gradients to previous layers:

True Label

5. Compute the gradients

to adjust the weights:

True Label

6. Backpropagate

the gradients to

previous layers:

True Label

7. Compute the gradients

to adjust the weights:

True Label

8. Backpropagate

the gradients to

previous layers:

True Label

9. Compute the gradients

to adjust the weights:

True Label

An Example of

Backpropagation
Convolutional Neural Networks

Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

True Label

True Label

where

True Label

where

True Label

where

True Label

where

True Label

True Label

True Label

True Label

Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

True Label

Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

True Label

Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

Increasing the score corresponding to the true class decreases the loss.

True Label

Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

Decreasing the score of other classes also decreases the loss.

True Label

Adjusting the weights:

True Label

Need to compute the following gradient

Adjusting the weights:

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

was already computed in the previous step

Adjusting the weights:

Need to compute the following gradient

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

Adjusting the weights:

where

Need to compute the following gradient

True Label

Adjusting the weights:

where

Need to compute the following gradient

True Label

Adjusting the weights:

Update rule:

Need to compute the following gradient

True Label

Backpropagating the gradients:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

was already computed in the previous step

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

where

True Label

Backpropagating the gradients:

Need to compute the following gradient:

where

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Adjusting the weights:

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

Update rule:

Backpropagating the gradients:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Adjusting the weights:

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

was already computed in the previous step

Adjusting the weights:

Need to compute the following gradient

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

Adjusting the weights:

where

Need to compute the following gradient

True Label

Adjusting the weights:

where

Need to compute the following gradient

True Label

Adjusting the weights:

Update rule:

Need to compute the following gradient

True Label

Backpropagating the gradients:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

was already computed in the previous step

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

where

True Label

Backpropagating the gradients:

Need to compute the following gradient:

where

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Backpropagating the gradients:

Need to compute the following gradient:

True Label

Adjusting the weights:

True Label

Adjusting the weights:

Need to compute the following gradient

True Label

Update rule:

Visual illustration

Backpropagation
Convolutional Neural Networks

Forward:

Fully Connected Layers:

Activation unit of interestForward:

Fully Connected Layers:

Activation unit of interest

The weight that is used in

conjunction with the

activation unit of interest

The output

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Backpropagation

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

A measure how much an activation

unit contributed to the loss

Backward:Forward:

Fully Connected Layers:

A measure how much an activation

unit contributed to the loss

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Backward:Forward:

Fully Connected Layers:

Summary for fully connected layers

Backpropagation
Convolutional Neural Networks

1. Let , where n denotes the number of

layers in the network.

Summary:

1. Let , where n denotes the number of

layers in the network.

2. For each fully connected layer :

• For each node in layer set:

Summary:

1. Let , where n denotes the number of

layers in the network.

2. For each fully connected layer :

• For each node in layer set:

• Compute partial derivatives:

Summary:

1. Let , where n denotes the number of

layers in the network.

2. For each fully connected layer :

• For each node in layer set:

• Compute partial derivatives:

• Update the parameters:

Summary:

Visual illustration

Backpropagation
Convolutional Neural Networks

Forward:

Convolutional Layers:

1l l la g z () () ()

Forward:

Convolutional Layers:

1l l la g z () () ()

Forward:

Convolutional Layers:

1l l la g z () () ()

1. Let , where c denotes the index of a first fully

connected layer.

2. For each convolutional layer :

• For each node in layer set

Summary:

1. Let , where c denotes the index of a first fully

connected layer.

2. For each convolutional layer :

• For each node in layer set

• Compute partial derivatives:

Summary:

1. Let , where c denotes the index of a first fully

connected layer.

2. For each convolutional layer :

• For each node in layer set

• Compute partial derivatives:

• Update the parameters:

Summary:

Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is

sent back from to the node where it came from.

True Label

4 5

7 8

Forward Pass

8

Layer Layer

Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is

sent back from to the node where it came from.

True Label

0 0

0

Backward Pass

Layer Layer

Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is

sent back from to the node where it came from.

True Label

Recognition as a big table lookup

Y

N

N

Y

Y

N

Y

Y

N

Y

N

Image bits

Recognition

Label

=

m

n

n*m

Image

write down all images

in a table and record

the object label

3

18

Each pixel has 2 = 256 values

3x18 image above has 54 pixels

Total possible 54 pixel images = 256

An tiny image example (can you see what it is?)

54

= 1.1 x 10

8

130

Prof. Kanade’s Theorem: we have not seen anything yet!

“How many images are there?”

3

18

Total possible 54 pixel images = 1.1 x 10
130

Total population

10 billion x 1000 x 100 x 356 x 24 x 60 x 60 x 30 = 10
24

Compared

generations days

hours

min/sec

frame rate

We have to be clever in writing down this table!

number of images seen by all humans ever:

years

A Closer Look inside the Convolutional Layer

A Chair Filter

A Person Filter

A Table Filter

A Cupboard Filter

Input Image

A Closer Look inside the Convolutional Layer :

A Closer Look inside the Back Propagation Convolutional Layer :

Adjusting the weights:

True Label

()

()

()

()

()

- elementwise multiplication

Training Batch

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

()

()

()

()

()

- elementwise multiplication

Training Batch

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

()

()

()

()

()

- elementwise multiplication

Training Batch

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

Adjusting the weights:

True Label

()

()

()

()

()

- elementwise multiplication

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

Training Batch

()

()

()

()

()

- elementwise multiplication

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

Training Batch

()

()

()

()

()

- elementwise multiplication

(performed in a sliding window fashion)

Average the Gradient

Across the Batch

Parameter Update

new old

Training Batch

