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Input: Output:

Goal: Given an image, we want to identify what class 

that image belongs to.



Input

Output
Convolutional Neural Network (CNN)

Pipeline:

A Monitor



Convolutional Neural Nets (CNNs) in a nutshell:

• A typical CNN takes a raw RGB image as an input.

• It then applies a series of non-linear operations on top 

of each other.

• These include convolution, sigmoid, matrix 

multiplication, and pooling (subsampling) operations.

• The output of a CNN is a highly non-linear function of 

the raw RGB image pixels.



How the key operations are encoded in standard CNNs:

• Convolutional Layers: 2D Convolution

• Fully Connected Layers: Matrix Multiplication

• Sigmoid Layers: Sigmoid function

• Pooling Layers: Subsampling



2D convolution:

- convolutional weights of size MxN

- the values in a 2D grid that we want to convolve

A sliding window operation across the entire grid    .
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CNNs aim to learn convolutional weights directly from the data



Input: Convolutional Neural Network (CNN)

Early layers learn to detect low level structures such as 

oriented edges, colors and corners



Input: Convolutional Neural Network (CNN)

Deep layers learn to detect high-level object structures and their parts.



A Closer Look inside the Convolutional Layer

A Chair Filter

A Person Filter

A Table Filter

A Cupboard Filter

Input Image



Fully Connected Layers:



Fully Connected Layers:

matrix multiplication



Max Pooling Layer:

• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the 

current window.
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• Sliding window is applied on a grid of values.

• The maximum is computed using the values in the 

current window.
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Sigmoid Layer:

• Applies a sigmoid function on an input



Let us now consider a CNN with a specific architecture:

• 2 convolutional layers.

• 2 pooling layers.

• 2 fully connected layers.

• 3 sigmoid layers.

Convolutional Networks
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- sigmoid function - softmax function
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Fully connected layer parameters in the fully 

connected layers 1 and 2
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Forward Pass:

- convolutional layer output

Notation:

- fully connected layer output

- pooling layer - sigmoid function

Key Question: How to learn the parameters from the data?

- softmax function



Backpropagation 

for

Convolutional Neural Networks



How to learn the parameters of a CNN?

• Assume that we are a given a labeled training dataset

• We want to adjust the parameters of a CNN such that 

CNN’s predictions would be as close to true labels as 

possible.

• This is difficult to do because the learning objective is 

highly non-linear.

Prediction True Label



Gradient descent: 

• Iteratively minimizes the objective function.

• The function needs to be differentiable.
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Gradient descent: 

• Iteratively minimizes the objective function.

• The function needs to be differentiable.



1. Compute the gradients of the overall loss 

w.r.t. to our predictions and propagate it back:

True Label
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An Example of 

Backpropagation 
Convolutional Neural Networks



Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

True Label



True Label



where

True Label



where

True Label



where

True Label



where

True Label



True Label



True Label



True Label



Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

True Label



Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

True Label



Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

Increasing the score corresponding to the true class decreases the loss.

True Label



Assume that we have K=5 object classes:

0.5
Class 1: Penguin

Class 2: Building

Class 3: Chair

Class 4: Person

Class 5: Bird

0 0.1 0.2 0.1

1 0 0 0 0

-0.5 0 0.1 0.2 0.1

Decreasing the score of other classes also decreases the loss.

True Label
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Need to compute the following gradient
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Update rule:



Visual illustration 

Backpropagation
Convolutional Neural Networks



Forward:

Fully Connected Layers:
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Fully Connected Layers:



Activation unit of interest

The weight that is used in 

conjunction with the 

activation unit of interest

The output
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Fully Connected Layers:
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Backward:Forward:

Fully Connected Layers:



Summary for fully connected layers

Backpropagation
Convolutional Neural Networks
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1. Let         , where c denotes the index of a first fully 

connected layer.

2. For each convolutional layer   :

• For each node      in layer    set  

• Compute partial derivatives:

• Update the parameters:

Summary:



Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is 

sent back from to the node where it came from.

True Label
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Forward Pass
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Layer Layer

Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is 

sent back from to the node where it came from.
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0 0

0

Backward Pass

Layer Layer

Gradient in pooling layers:

• There is no learning done in the pooling layers

• The error that is backpropagated to the pooling layer, is 

sent back from to the node where it came from.

True Label



Recognition as a big table lookup

Y

N

N

Y

Y

N

Y

Y

N

Y

N

Image bits

Recognition

Label

= 

m

n

n*m

Image

write down all images 

in a table and record 

the object label



3

18

Each pixel has 2 = 256 values

3x18 image above has 54 pixels

Total possible 54 pixel images = 256

An tiny image example (can you see what it is?)

54

= 1.1 x 10

8

130

Prof. Kanade’s Theorem:  we have not seen anything yet!

“How many images are there?”



3

18

Total possible 54 pixel images = 1.1 x 10
130

Total population

10 billion  x 1000  x 100 x 356 x 24 x 60 x 60 x 30 = 10
24

Compared 

generations days

hours

min/sec

frame rate

We have to be clever in writing down this table!

number of images seen by all humans ever:

years



A Closer Look inside the Convolutional Layer

A Chair Filter

A Person Filter

A Table Filter

A Cupboard Filter

Input Image



A Closer Look inside the Convolutional Layer :



A Closer Look inside the Back Propagation Convolutional Layer :
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