
Putting it together
What we see What we really see

Object Detection

Object Segmentation

Basic Shape

Comparison

Contour based

shape matching

template

shape

query image

How to find the template

shape in the query image?

Contour based

shape matching

template

shape

query image

Detect edges in query image, binary

edge or edge with soft-magnitude

Contour based

shape matching

template shape query image

Slide template over query image edge map

Let p,q be two edge sets to be

compared

Distance transform:

Contour based

shape matching

template shape query image

At each location, compute distance from each pixel p in template to closest

edge in image q. (red is large distance, blue is low)

Location with the lowest average cost match wins (over template pixels)

1. Slide template T by (u,v) over query image edge map E

(,) {(,) | (,) }T u v x u y v x y T   

Chamfer Matching

1. Slide template T by (u,v) over query image edge map E

2. Matching cost of each pixel p in the shifted template T(u,v)

is its shortest distance to any edge pixel q in the edge map E

Chamfer Matching

Brute force computation takes

Using distance transform, it takes

(|| ||)n TO
() (|| ||)n TO O

1. Slide template T by (u,v) over query image edge map E

2. Matching cost of each pixel p in the shifted template T(u,v)

is its shortest distance to any edge pixel q in the edge map E

3. Total cost of the shifted template is the average cost of each shifted template pixel

10.8

4.

4

Chamfer Matching

E

Recall: generalized distance transform

Now finding the cost of each point is just a look up!

Evaluation time for each shift is just

Total running time for m shifts is: (typically, m = n)

2(|| || (min || ||)) () (|| ||)
q E

n m T p q n m T


   O O O O

2 (||||(min||||))(||||)
qE

TpqT


 OOO

0. Detect edges in query image

1. Slide template over query image edge map

2. Find closest edge pixel in image for each

shifted template pixel

3. At each location, compute average distance

from each pixel in template to closest edge in

image

4. Lowest cost match wins

0

10.

8
4.4

1 2 3

Chamfer Matching Review

Weaknesses of Chamfer Matching?

Rotation Scale

Aspect ratio Bad edge map threshold / Clutter

Some Alternatives

Each edge pixel may have an “edgeness” score

instead of a binary value to avoid bad thresholding.

Where f(q) is the “edgeness” of pixel q, and f(q) is in [0,1].

Distance transform still applies.

Voting from low cost matches:

Each hypothesis votes for edge pixels in the query image that

participates in the match.

What results in high chance of accidental alignment?

How is chamfer matching different from other shape methods we introduced?

Deformable Shape

Applying chamfer matching

directly

mod

el

Deformable part model detection with 6

parts

Applying chamfer matching

directly

model

Deformable part model detection with

4 parts

Voting based shape detection
Simplified

Input Image Model

Construct a code book

for each model points:

(green) nodes

(Hog or Shape Context +

offset to center)

Code: =

Input Image Model

scan over image points, find the top k matches in

model

Input Image Model

Create vote map in Input image, based on the top k

matches in model

Input Image Model

scan over image points, find the top k matches in

model

Input Image Model

1) Create vote map in Input image, based on the top k

matches in model

2) Summing up the map

Pictorial Structure

Simplified

Input Image Model

Input Image Model

Generate part score map in image

Combine multiple part score function into one score

map

construct a ‘star’ graph, with parts as node,

pick one node as “root”

Shift score map for Left eye onto

center(nose)

For each non-root node:

Shift score map for Right eye onto

center(nose)

Shift score map for Left mouth onto

center(nose)

Shift score map for Right mouth onto

center(nose)

Add up all the part vote score maps

Object Representation

Pictorial Structure

O b j e c t R e p r e s e n t a t i o n

L1 L2

L3

L4

(L1, L2, L3, L4) =((300,200), (300,250), (330,230),(360,230))

P a r t - b a s e d O b j e c t

R e p r e s e n t a t i o n

measuring “goodness” of the part

configuration

measuring “goodness” of the part

appearance

image Label

P a r t - b a s e d O b j e c t

R e p r e s e n t a t i o n

S o l u t i o n

1) Reduce number of possible feature locations, by

feature detection.

-- a possible solution is use shape context

features

2) Find efficient way of dealing large number of

features, each of which has a goodness measure

-- we will cover this story here...

L1 L2

L3

L4

Simplifying “goodness” measure using k-fan

model

1) we only check if the parts configuration

between the reference node(nose in this case),

with all other nodes

measuring “goodness” of the part

configuration

D e a l i n g w i t h “ s o f t ” f e a t u r e s

A simplified object of two parts (front & back

wheel)

Soft object

detection map

Back wheel
(reference) Front wheel

distance between the

wheels in a known range

Soft object

detection map

p: location of back wheel q: location of front wheel

distance between the

wheels in a known range

h(p-q) f(q)f(p)
L(p,q|I

)
= + +

Soft part detection

measure for q

Soft part detection

measure for p

configuration

goodness (p,q)

Soft object

detection map

p: location of back wheel q: location of front wheel

distance between the

wheels in a known range

h(p-q) f(q)f(p)
L(p,q|I

)
= + +

In this case p, q each has n (image size=1million)

possible locations, L(p,q| I) has n^2 (Trillion)

possible solutions

fast solution is needed!

p: location of back wheel q: location of front wheel

distance between the

wheels in a known range

h(p-q) f(q)f(p)

L(p,q|I

)
=

+ +

min(p,q)

L(p,q|I

)
=

min(p,q) f(p) h(p-q) f(q)+ +

min(p)(f(p)= + min(q)(f(q) h(p-q)+))

Dq(p) : generalized distance transform

This can be computed in linear time!

http://www.cs.cornell.edu/~dph/papers/dt.p

df

http://www.cs.cornell.edu/~dph/papers/dt.pdf

L1 L2

L3

L4

There is an efficient exact inference for graph without loop

Procedure:

Step 1, order tree

determine a root of the tree, and order

the nodes according to its depth

Step 2-3: Gather information.

processing from the bottom of the tree (nodes

with max. depth) backward to the root of the

tree

Step 4-5: Decide at root, and propagate

Make decision at the tree root, and recursively

propagate the information down

L1 L2

L3

L4

for the leaf nodes, j, (nodes with max. depth)

Compute the following table, indexed by

its possible parent node assignment:

Step 2: Gather Information for leaves nodes

parent node label

Given a parent node label,

find the best label for itself

L1 L2

L3

L4

for the leaf nodes, j, (nodes with max. depth)

Compute the following table, indexed by

its possible parent node assignment:

Step 2: Gather Information for leaves nodes

Important: we need to store both the optimal

value l_j, as well the cost at the optimal label l_j

model

part

detection

cost

transformed

cost

part

detection

cost

transformed

cost

Step 3: Gather Information at inside node

for inside nodes, j, (not root, not leaves)

Compute the following table, indexed by its

possible parent node assignment:

parent node label do the best

for itself

considering parent’s

(i) preference

considering votes from

all its children (c)

model

part

detection

cost

transformed

cost

part detection cost

part

detection

cost

transformed

cost

transformed

cost

Step 3: Make decision at the root node

do the best

for itself
considering votes from

all its children (c)

The decision at the root is purely local, no need

to check with anyone else.

Good to the root, but one wrong choice, it effects

the whole tree.

model

part

detection

cost

transformed

cost

part detection cost

part detection cost

part

detection

cost

transformed

cost

transformed

cost

combined cost of root (head) locations

L2

L3

L4

Step 4: recursively propagate information down

L1

Given parent node is decided

current node label decision can be directly read off from the

table

decide by read off from table

model

Deformable part model detection with 4

parts

model

part

detection

cost

transformed

cost

part detection cost

combined cost of root (neck) locations

mod

el

mod

el

Learning Pictorial

Structure

A Modern Version

1) fine level with deformable parts

2) coarse level with a fixed template model

