
Putting it together
What we see What we really see



Object Detection



Object Segmentation





Basic Shape 

Comparison



Contour based 

shape matching

template 

shape

query image

How to find the template 

shape in the query image?



Contour based 

shape matching

template 

shape

query image

Detect edges in query image, binary 

edge or edge with soft-magnitude



Contour based 

shape matching

template shape query image

Slide template over query image edge map



Let p,q be two edge sets to be 

compared

Distance transform:









Contour based 

shape matching

template shape query image

At each location, compute distance from each pixel p in template to closest 

edge in image q. (red is large distance, blue is low)

Location with the lowest average cost match wins (over template pixels)



1. Slide template T by (u,v) over query image edge map E
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Chamfer Matching



1. Slide template T by (u,v) over query image edge map E

2. Matching cost of each pixel p in the shifted template T(u,v) 

is its shortest distance to any edge pixel q in the edge map E

Chamfer Matching

Brute force computation takes

Using distance transform, it takes
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1. Slide template T by (u,v) over query image edge map E

2. Matching cost of each pixel p in the shifted template T(u,v)

is its shortest distance to any edge pixel q in the edge map E

3.   Total cost of the shifted template is the average cost of each shifted template pixel
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4.

4

Chamfer Matching



E

Recall: generalized distance transform





Now finding the cost of each point is just a look up!

Evaluation time for each shift is just               

Total running time for m shifts is: (typically, m = n)
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0.   Detect edges in query image

1. Slide template over query image edge map

2. Find closest edge pixel in image for each 

shifted template pixel

3. At each location, compute average distance 

from each pixel in template to closest edge in 

image

4. Lowest cost match wins
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Chamfer Matching Review



Weaknesses of Chamfer Matching?



Rotation Scale

Aspect ratio Bad edge map threshold / Clutter



Some Alternatives

Each edge pixel may have an “edgeness” score 

instead of a binary value to avoid bad thresholding.

Where f(q) is the “edgeness” of pixel q, and f(q) is in [0,1].  

Distance transform still applies.



Voting from low cost matches:

Each hypothesis votes for edge pixels in the query image that 

participates in the match.







What results in high chance of accidental alignment?

How is chamfer matching different from other shape methods we introduced?



Deformable Shape



Applying chamfer matching 

directly



mod

el

Deformable part model detection with 6 

parts



Applying chamfer matching 

directly



model

Deformable part model detection with 

4 parts



Voting based shape detection
Simplified



Input Image Model

Construct a code book 

for each model points: 

(green) nodes

(Hog or Shape Context +

offset to center     ) 

Code: =



Input Image Model

scan over image points, find the top k matches in 

model 



Input Image Model

Create vote map in Input image, based on the top k 

matches in model 



Input Image Model

scan over image points, find the top k matches in 

model 



Input Image Model

1) Create vote map in Input image, based on the top k 

matches in model 

2) Summing up the map







Pictorial Structure

Simplified



Input Image Model



Input Image Model

Generate part score map in image



Combine multiple part score function into one score 

map



construct a ‘star’ graph, with parts as node,

pick one node as  “root”



Shift score map for Left eye onto 

center(nose)

For each non-root node:



Shift score map for Right eye onto 

center(nose)



Shift score map for Left mouth onto 

center(nose)



Shift score map for Right mouth onto 

center(nose)



Add up all the part vote score maps



Object Representation

Pictorial Structure



O b j e c t  R e p r e s e n t a t i o n

L1 L2

L3

L4

(L1, L2, L3, L4 ) =( (300,200),  (300,250), (330,230),(360,230) )





P a r t - b a s e d  O b j e c t  

R e p r e s e n t a t i o n

measuring “goodness” of the part 

configuration

measuring “goodness” of the part 

appearance

image  Label



P a r t - b a s e d  O b j e c t  

R e p r e s e n t a t i o n



S o l u t i o n

1) Reduce number of possible feature locations, by 

feature detection.  

-- a possible solution is use shape context 

features

2) Find efficient way of dealing large number of 

features, each of which has a goodness measure 

-- we will cover this story here...



L1 L2

L3

L4

Simplifying “goodness” measure using k-fan 

model

1) we only check if the parts configuration 

between the reference node(nose in this case), 

with all other nodes

measuring “goodness” of the part 

configuration



D e a l i n g  w i t h  “ s o f t ”  f e a t u r e s



A simplified object of  two parts (front & back 

wheel)

Soft object 

detection map

Back wheel
(reference) Front wheel

distance between the 

wheels in a known range



Soft object 

detection map

p: location of back wheel q: location of front wheel

distance between the 

wheels in a known range

h(p-q) f(q)f(p)
L(p,q|I

)
= + +

Soft part detection 

measure for q

Soft part detection 

measure for p

configuration 

goodness (p,q)



Soft object 

detection map

p: location of back wheel q: location of front wheel

distance between the 

wheels in a known range

h(p-q) f(q)f(p)
L(p,q|I

)
= + +

In this case p, q each has n (image size=1million) 

possible locations, L(p,q| I) has n^2 ( Trillion) 

possible solutions

fast solution is needed!



p: location of back wheel q: location of front wheel

distance between the 

wheels in a known range

h(p-q) f(q)f(p)

L(p,q|I

)
=

+ +

min(p,q)

L(p,q|I

)
=

min(p,q) f(p) h(p-q) f(q)+ +

min(p)( f(p)= + min(q)( f(q) h(p-q)+ ) )

Dq(p) : generalized distance transform

This can be computed in linear time!



http://www.cs.cornell.edu/~dph/papers/dt.p

df



http://www.cs.cornell.edu/~dph/papers/dt.pdf



L1 L2

L3

L4

There is an efficient exact inference for graph without loop

Procedure: 

Step 1, order tree

determine a root of the tree, and order 

the nodes according to its depth

Step 2-3: Gather information. 

processing from the bottom of the tree (nodes 

with max. depth) backward to the root of the 

tree

Step 4-5: Decide at root, and propagate 

Make decision at the tree root, and recursively 

propagate the information down



L1 L2

L3

L4

for the leaf nodes, j, (nodes with max. depth)

Compute the following table, indexed by 

its possible parent node assignment:

Step 2:  Gather Information for leaves nodes

parent node label

Given a parent node label, 

find the best label for itself



L1 L2

L3

L4

for the leaf nodes, j, (nodes with max. depth)

Compute the following table, indexed by 

its possible parent node assignment:

Step 2:  Gather Information for leaves nodes

Important: we need to store both the optimal 

value l_j, as well the cost at the optimal label l_j



model

part 

detection 

cost

transformed 

cost

part 

detection 

cost

transformed 

cost



Step 3:  Gather Information at inside node

for inside nodes, j, (not root, not leaves)

Compute the following table, indexed by its 

possible parent node assignment:

parent node label do the best 

for itself

considering parent’s 

(i) preference

considering votes from 

all its children (c)



model

part 

detection 

cost

transformed 

cost

part detection cost

part 

detection 

cost

transformed 

cost

transformed 

cost



Step 3:  Make decision at the root node

do the best 

for itself
considering votes from 

all its children (c)

The decision at the root is purely local, no need 

to check with anyone else.  

Good to the root, but one wrong choice, it effects 

the whole tree.



model

part 

detection 

cost

transformed 

cost

part detection cost

part detection cost

part 

detection 

cost

transformed 

cost

transformed 

cost

combined cost of root (head) locations



L2

L3

L4

Step 4:  recursively propagate information down 

L1

Given parent node is decided

current node label decision can be directly read off from the 

table 

decide by read off from table



model

Deformable part model detection with 4 

parts



model

part 

detection 

cost

transformed 

cost

part detection cost

combined cost of root (neck) locations



mod

el



mod

el





Learning Pictorial 

Structure



A Modern Version

1) fine level with deformable parts

2) coarse level with a fixed template model


















