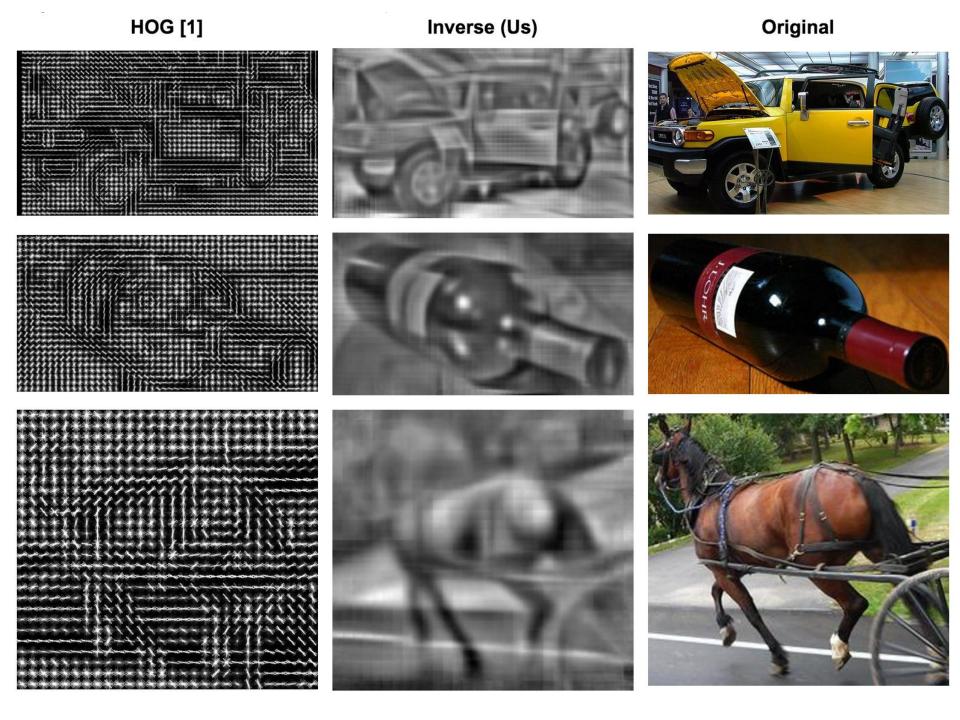
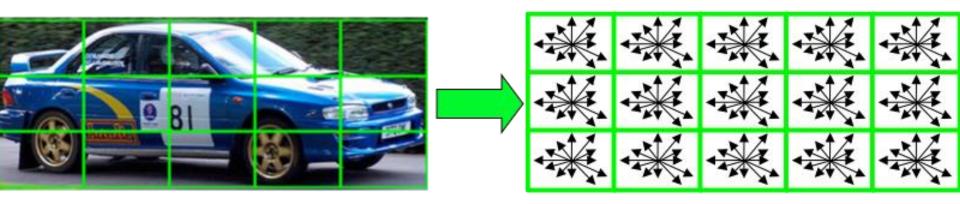
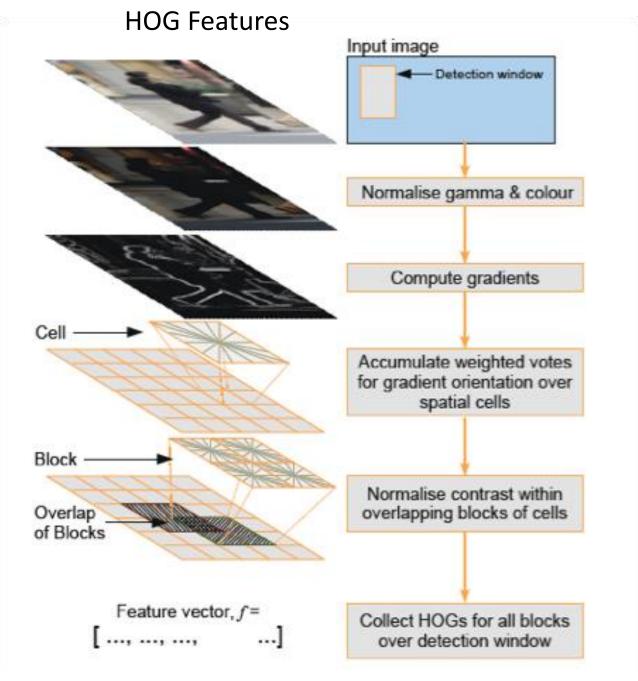


Miriam Blaylock@flickr

Hog







Create cell histograms

- Each pixel in cell casts weighted vote based on gradient magnitude centered there
 - Weighted by applying a
 Gaussian spatial window to
 each pixel before
 accumulating orientation
 votes into cells → (σ = .
 5*block width)
- Votes are accumulated in 9
 Histogram channels
 (orientation bins) spread
 evenly over 0-180 degrees (Or 0-360 degrees if signed values desired)

"Human Detection PHD Thesis" Navneet Dalal 2006

Descriptor Blocks

- To account for illumination/ contrast changes the cells must be grouped into "blocks" and normalized
- HOG descriptor is a vector of components of normalized cell histograms from all the block regions
- Author's optimum R-HOG (10% miss rate)
 - 3 parameters
 - 3x3 cell blocks
 - 6x6 pixel cells
 - 9 histogram channels (orientation bins)

Block

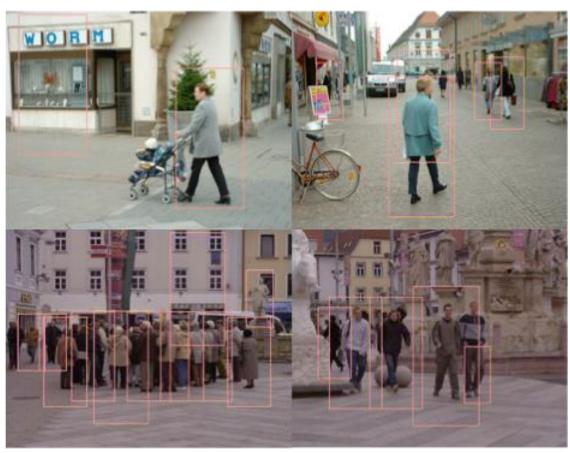
Normalize the Blocks

 V is vector containing nonnormalized histogram data and e is a small constant (Not very important over the larger ranges – 1e^-3 to 5e^-2)

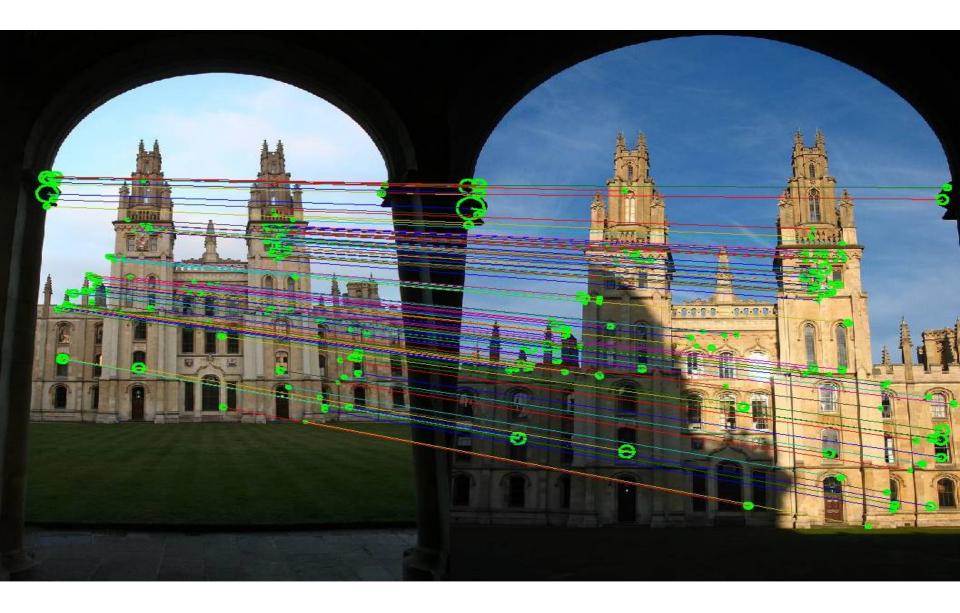
Typical Detector Window

- Authors used 64x128 detection window
- 16 pixels of margin around person on all four sides
- Decreasing window size or person size in image decreases performance

Importance weighted responses

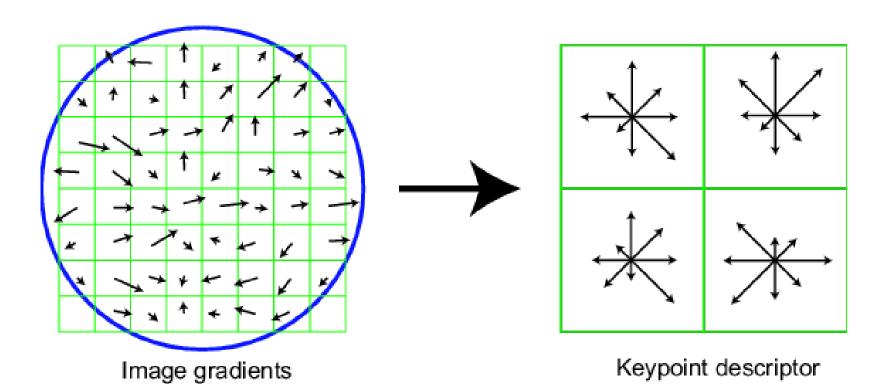


SIFT



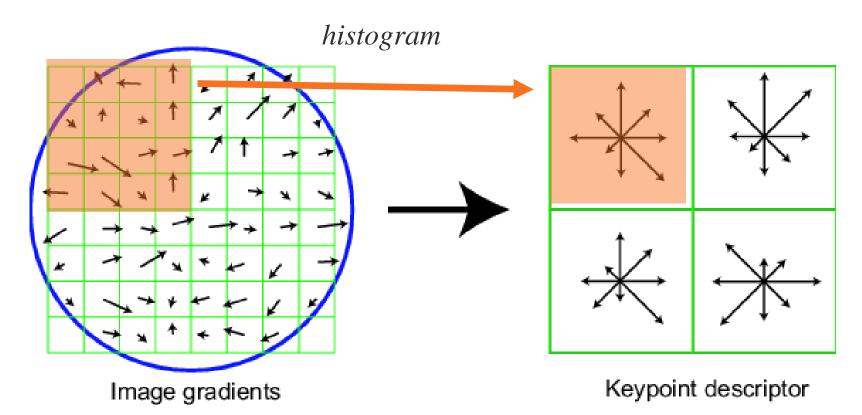
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

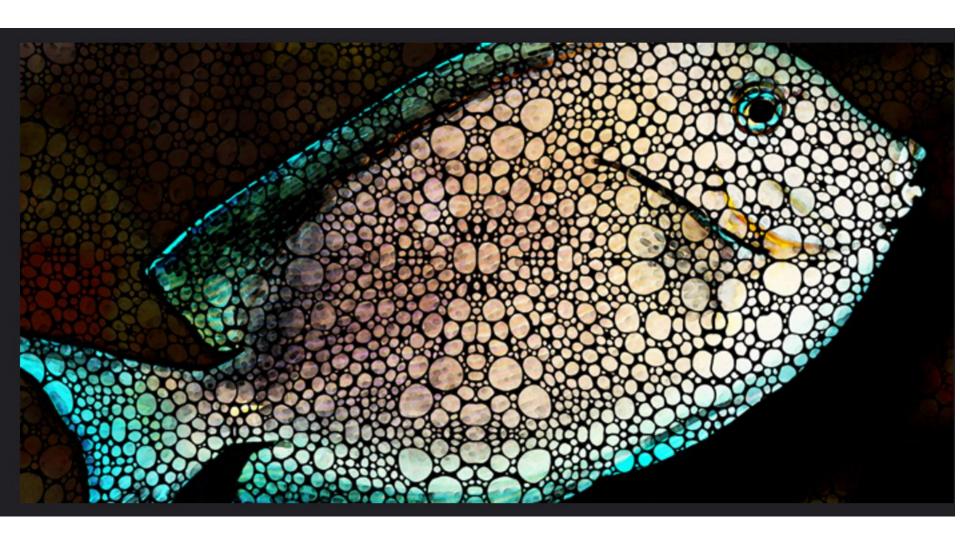


SIFT vector formation

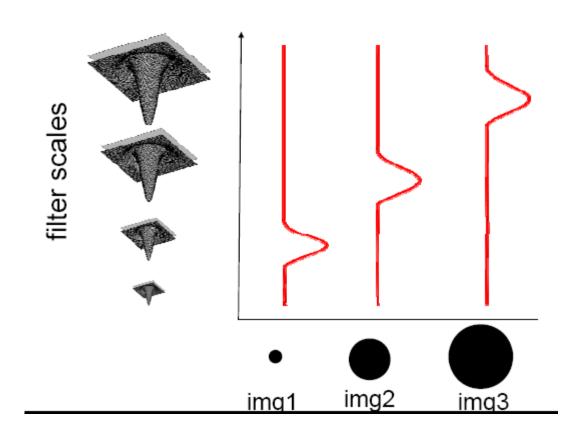
 Orientation is defined relative to the orientation of the detected Sift feature



SIFT Fish

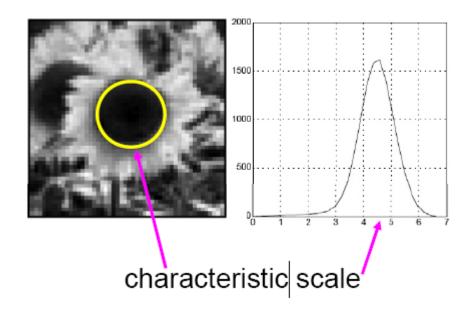


Laplacian-of-Gaussian = "blob" detector



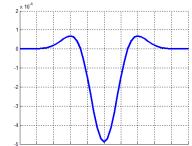
At a given point in the image:

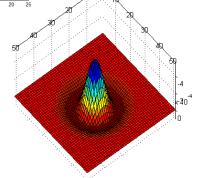
 We define the characteristic scale as the scale that produces peak of Laplacian response

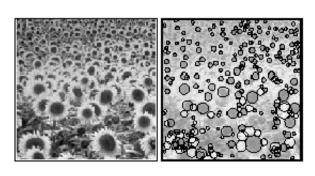


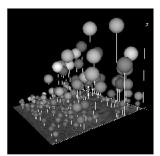
Lowe's Scale-space Interest Points

- Laplacian of Gaussian kernel
- Scale-space detection
 - Find local maxima across scale space
 - A good "blob" detector



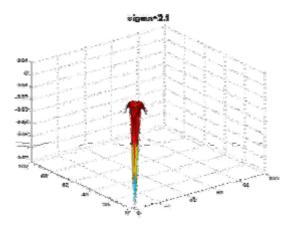


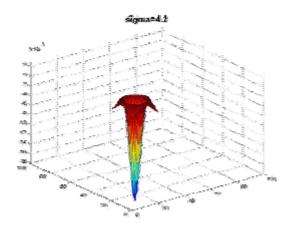


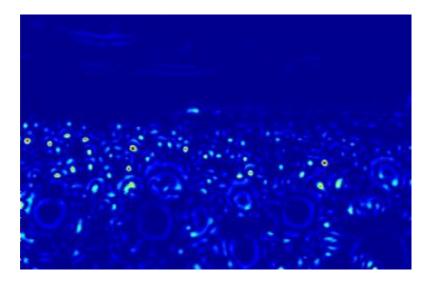


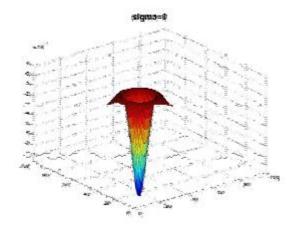
$$G(x,y,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{x^2+y^2}{\sigma^2}}$$

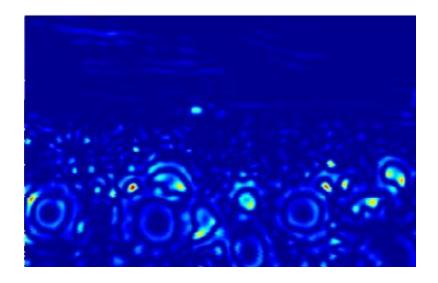
$$\nabla^2 G(x, y, \sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

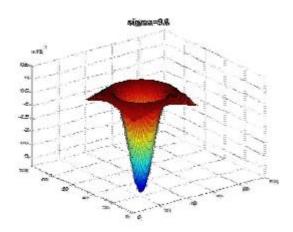


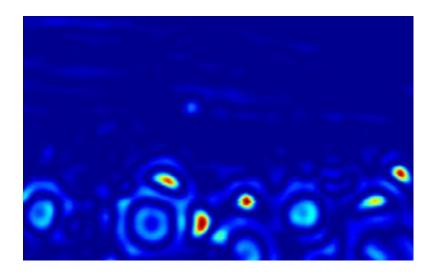


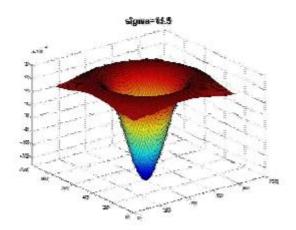


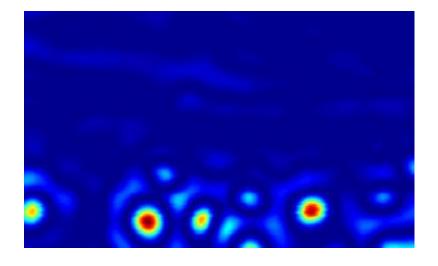


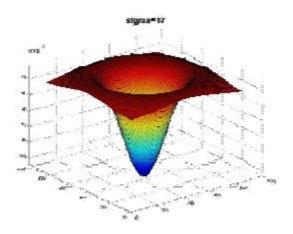


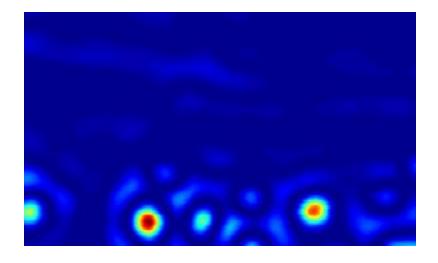




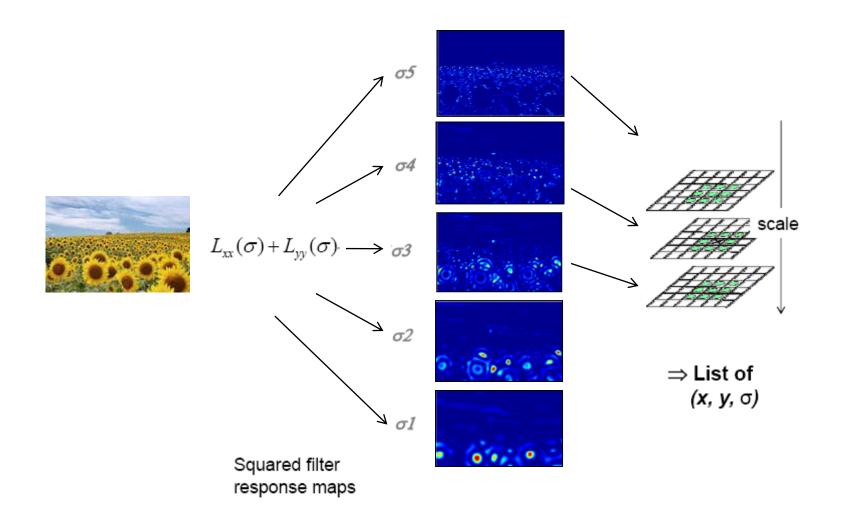




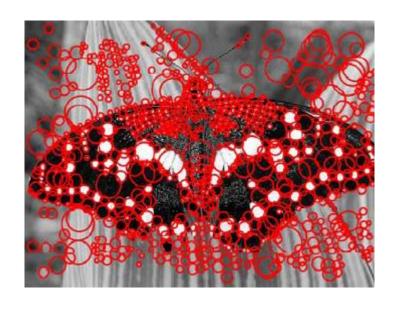




Scale-space blob detection



Scale-space blob detector: Example



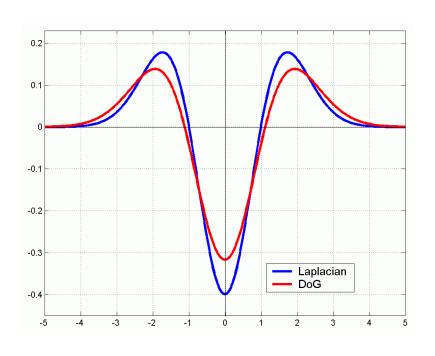
LoG V.S. DoG

$$\nabla^2 G_{\sigma}(x, y) = \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) G_{\sigma}(x, y)$$

$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma \frac{\partial G}{\partial \sigma} = (k-1)\sigma^2 \nabla^2 G$$

$$\text{LoG}$$

Lowe's Scale-space Interest Points: Difference of Gaussians



 Gaussian is an ad hoc solution of heat diffusion equation

$$\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G.$$

Hence

$$G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma^2 \nabla^2 G.$$

 k is not necessarily very small in practice

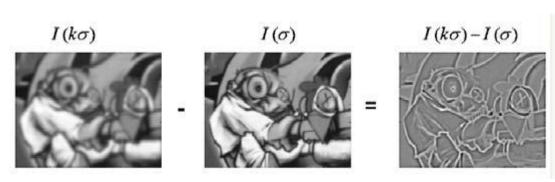
Technical detail

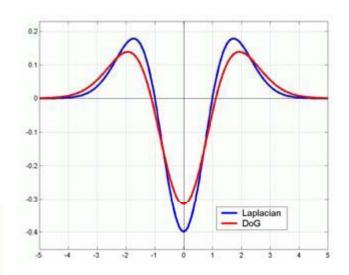
 We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

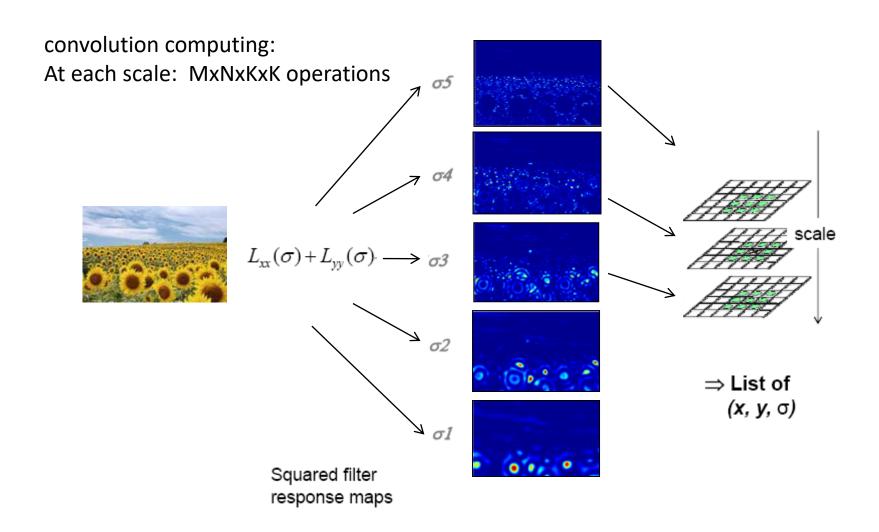
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)





How many scales?



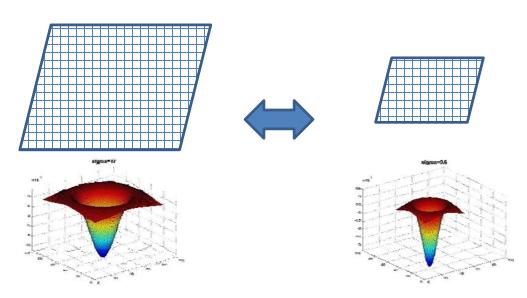
DoG Image Pyramid

$$\sigma_0, k\sigma_0, k^2\sigma_0, k^3\sigma_0, k^4\sigma_0, k^5\sigma_0, k^6\sigma_0, \dots$$

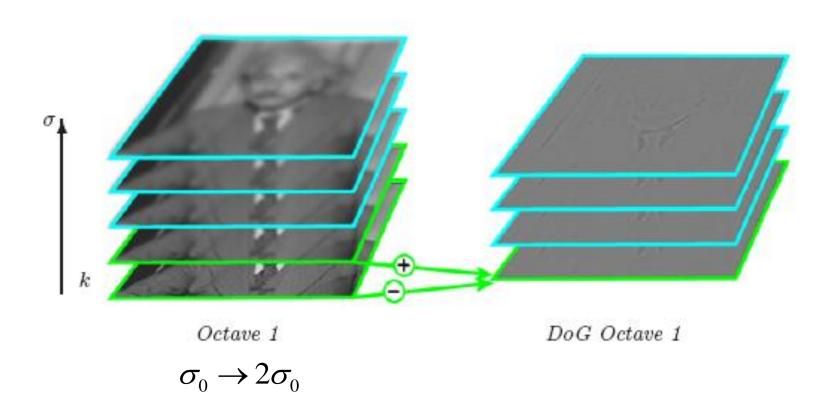
 $\sigma_0 \rightarrow 2\sigma_0$

image MxN, filter 2Kx2K

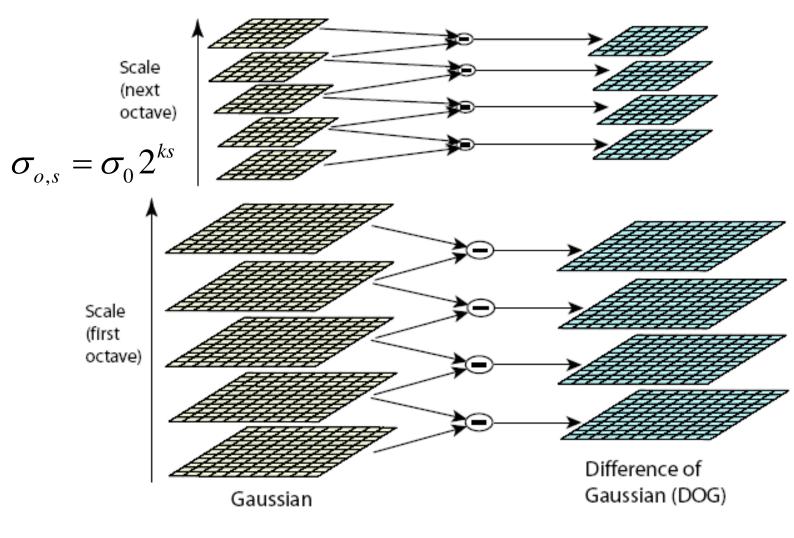
image M/2xN/2, filter, KxK



DoG Image Pyramid



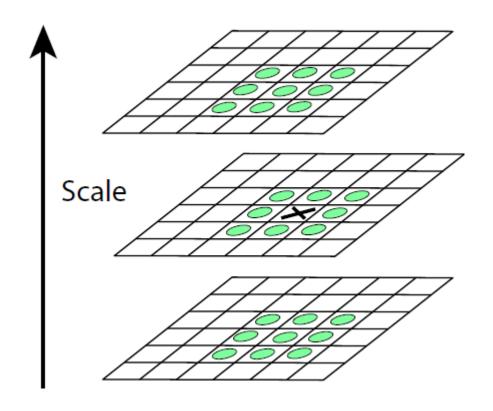
. . .



$$\sigma_{o,s} = \sigma_0 2^{o+ks}$$

Local Extrema Detection

- Maxima and minima
- Compare x with its
 26 neighbors at 3
 scales



Frequency of sampling in scale

- s: intervals in each octave of scale space ($\sigma_0 \rightarrow 2\sigma_0$)
 - $k=2^{1/s}$

$$\sigma_{o,s} = \sigma_0 2^o k^s$$

- In order to cover a complete octave for extrema detection
 - -S = s+3 Gaussian images are produced for each octave
 - s: {-1,S+1}
 - s+2 DoG images
 - s scales for extrema detection

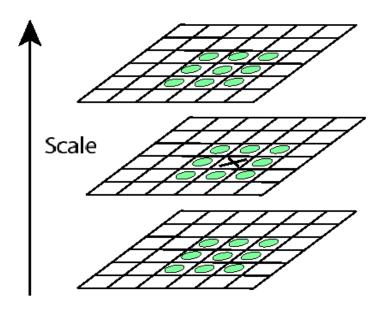
SIFT Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for subpixel and sub-scale interpolation (Brown & Lowe, 2002)
- Taylor expansion around point:

 Offset of extremum (use finite differences for derivatives):

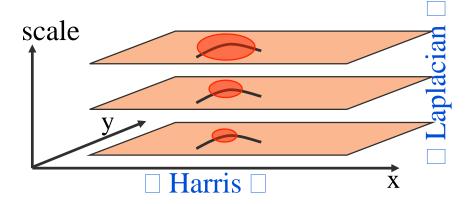
$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\hat{\mathbf{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$



Scale Invariant Detectors

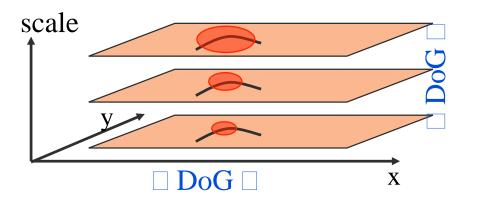
- Harris-Laplacian¹
 Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale



• SIFT (Lowe)²

Find local maximum of:

Difference of Gaussians in space and scale



¹ K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001

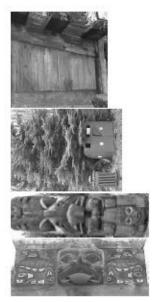
² D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

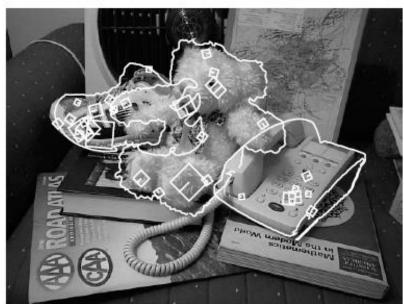
Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(d)

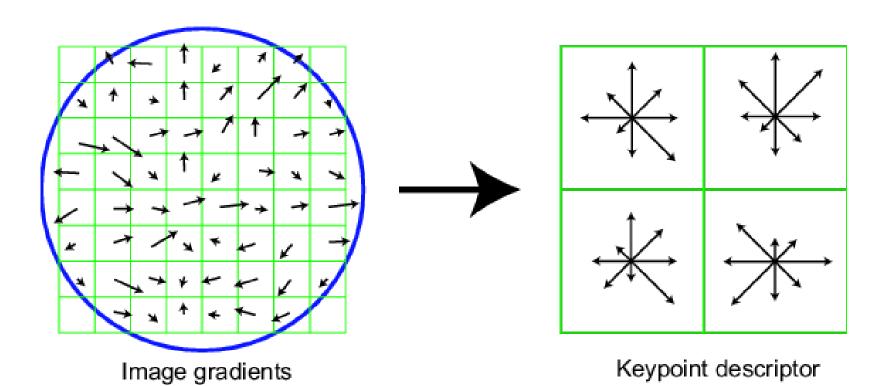
- (a) 233x189 image
- (b) 832 DOG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures





SIFT vector formation

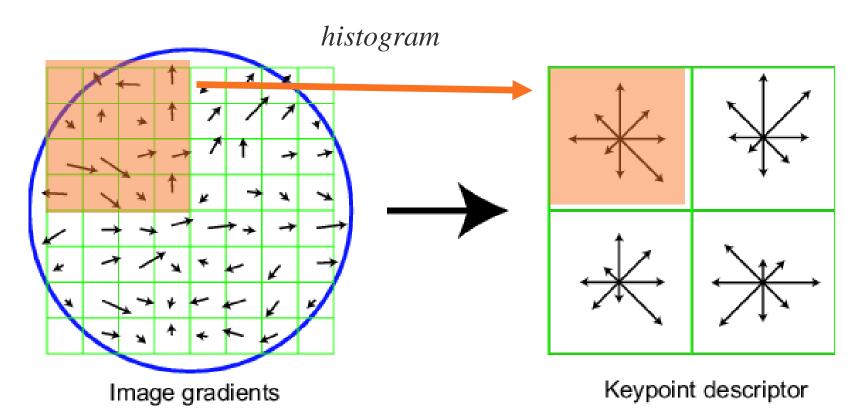
- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions



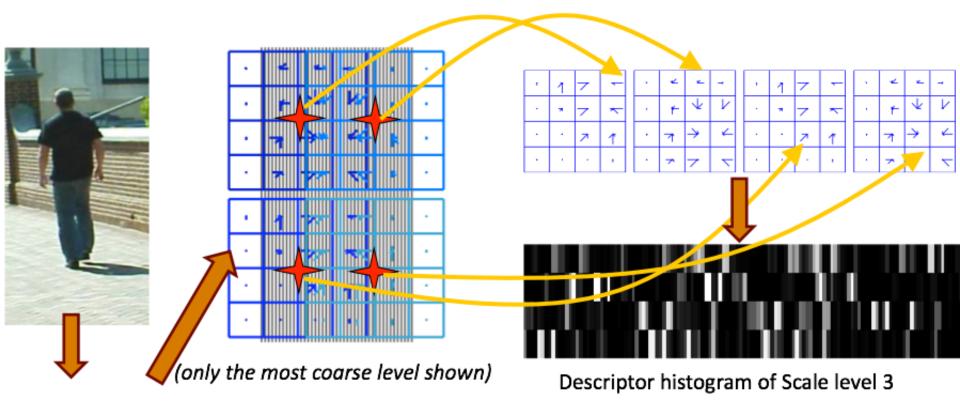
SIFT vector formation

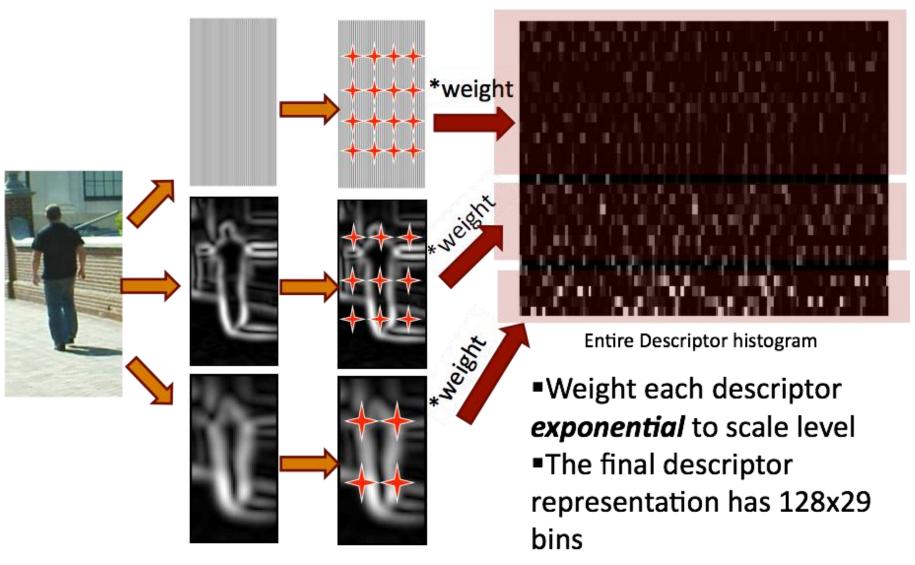
 Orientation is defined relative to the orientation of the detected Sift feature

Local orientation

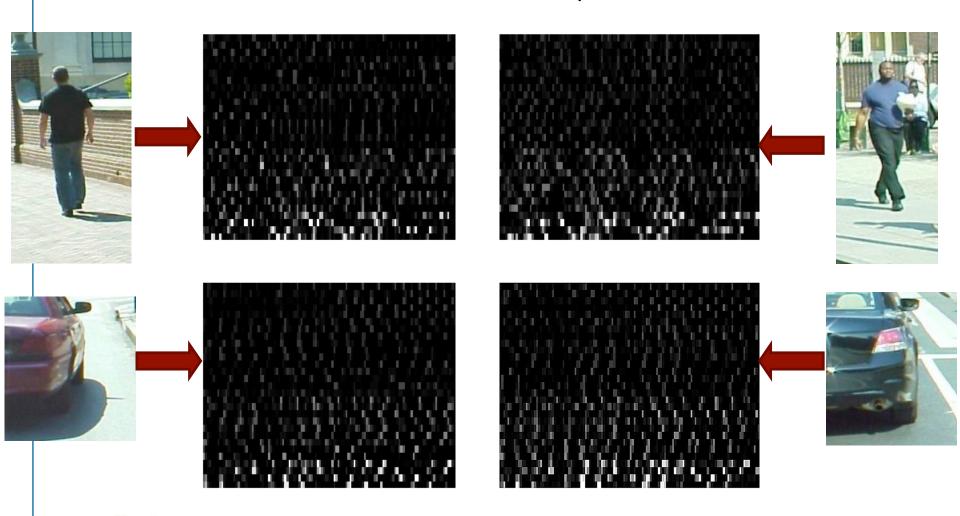


Feature Extraction for Image Classifier





Examples fragturan Extraction for langue Constitution

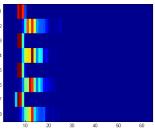


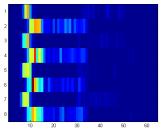
Penn SkEyes MARYLAND Penn

Features Sample

1. Color Histogram

2.HOG feature





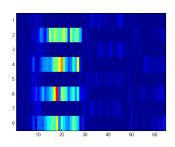
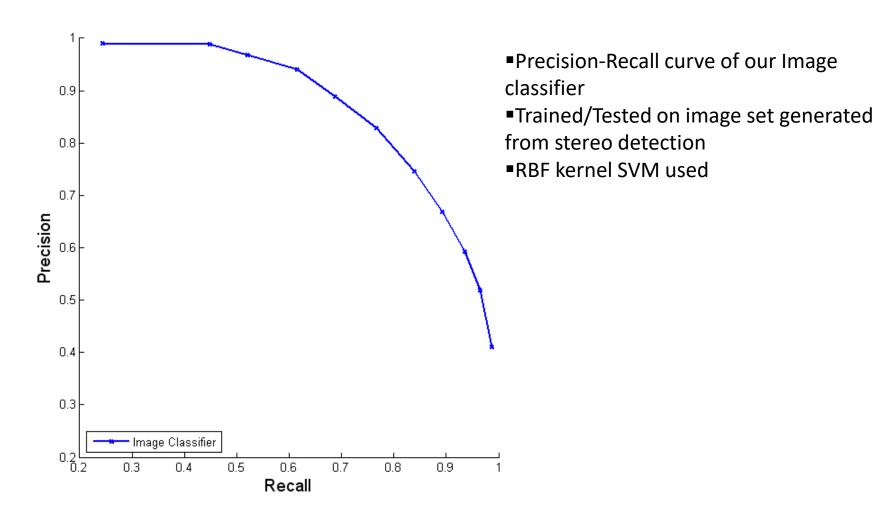


Image Classifier Result



Typical Missed Detections

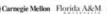
Occlusions

•Incomplete stereo detection

Lack of training data

Typical False Positives

•Human-like Shapes & Clutters



Deep...

