

 $820\times546\times3$

 $420\times546\times3$

(b)

(a)

Guess

- We use "crop", "scaling" and "carving" for resizing the given image
- Guess which one is for carving?

Expanded

Seam:
$$S^{y}$$
: {(i, y(i)) | i = 1,...,M} s.t. | y(i) - y(i-1) | \le k

$$S^{y}$$
: {(i, y(i)) | i = 1,...,M} s.t. | y(i) - y(i-1) | \le k

Seam Cost:
$$E(S^{y}) = \sum_{i=1}^{M} e(S^{y}(i))$$

- Seam $S^{y}: \{(i, y(i)) | i = 1, \dots, M\} s. t. |y(i) y(i 1)| \le k$
- Seam Cost:

$$\mathsf{E}(S^{y}) = \sum_{i=1}^{\mathbf{M}} \ \mathsf{e}(S^{y}(i))$$

• **Goal:** $S^* = \min E(S^y)$

Where does the energy matrix come from?

Energy matrix

For example: L1 norm of the edge gradients for the energy function

How to find the best seam?

Idea 1: Brute force search

- 1st row: N
 - (2k+1)N

 $(2k+1)^2 N$

3rd row:

2nd row:

•

- $M^{ ext{th}}$ row:
- $(2k+1)^{(\mathbf{M}-1)}\mathbb{N}$

• How many possibilities for Seam S^{γ} ?

Idea 1: Brute force search

How many possibilities for Seam S^{γ} ?

Too many possibilities! 1024×3^{767}

Μ

Ν

Idea 2: Find the shortest path from the first row to the last row on the energy map

Shortest Path

Construct the directed graph G where

each pixel (node) is connected to the (2k+1) neighbors in the next row

Shortest Path

- Create an `interior' set S, initialize with the first row
- Growing S with `least-resistant' step
- Construct a 'Value' matrix with value V(u) encoding the shortest path cost to each node in S

Shortest Path

- Initialize $S \ \mbox{to}$ include the first row, and set the Value function

$$V(u) = e(u), u \in S$$

For the first row, the shortest path contains only itself

Iterate: find the step expansion of `least resistant' from $S \rightarrow S$

 $V = \underset{u \in S, v \in \tilde{S}}{\operatorname{argmin}}[V(u) + e(v)] \quad where \ (u \rightarrow v) \text{ is a graph edge}$

Iterate: find the step expansion of least resistant from $S \rightarrow S$

 $V = \underset{u \in S, V \in \tilde{S}}{\operatorname{argmin}}[V(u) + e(V)] \qquad where (u \rightarrow V) \text{ is a graph edge}$

Remember the path back from $(V \rightarrow u)$ P(V) = U

- Updating the "interior" set: $S = S \cup \{v\}$, $\tilde{S} = \tilde{S} \{v\}$.
- Updating the Value function: $V(v) = \min_{u}[V(u) + e(v)]$

V(v) : Is the contingent cost E of the shortest path connecting the pixel v to the first row

v∈S

- Updating the "interior" set: $S = S \cup \{v\}$, $\tilde{S} = \tilde{S} \{v\}$.
- Updating the Value function: $V(v) = \min_{v \in \tilde{S}} [V(u) + e(v)]$
- Until reaching one of the pixels on the last row.

Energy Matrix e

Value function V(u)

Path Matrix P

Frontier growing row by row

Μ

Ν

Idea 3: Dynamic programming!

Use the same graph structure

Propagate the frontier row by row to construct the Value Matrix

• Still start from first row, and initialize the Value function

$$\forall (1,j) = \mathrm{e}(1,j)$$

• Set the Path function

$$\mathsf{P}(1,j)=0$$

• Propagate to the second row, and update the value matrix

V(2, j) = e(2, j) + min(V(1, j-k), ..., V(1, j), ..., V(1, j+k))

V(2, j): is the contingent cost of the shortest path connecting the pixel (2,j) to the first row

- Propagate to the second row, and update the value matrix V(2, j) = e(2, j) + min(V(1, j-k), ..., V(1, j), ..., V(1, j+k))
- Set the Path function

P(2, j) = argmin(V(1, j-k), ..., V(1, j), ..., V(1, j+k))

- Iteratively propagate to the ith row, and update the value matrix
 V(i, j) = e(i, j) + min(V(i-1,j-k),...,V(i-1,j),...,V(i-1,j+k))
- Set the Path function

P(i, j) = argmin(V(i-1, j-k), ..., V(i-1, j), ..., V(i-1, j+k)))

Value Matrix V

Energy Matrix e

Value Matrix V

• Localize the minimum of the last row of

argmin V(M,:)

Dynamic Programming Value Matrix V

Path Matrix P

Value Matrix V Path Matrix P \square 1 $\left(\right)$ 10 we with 1415 *** 8 610 $\gamma \eta_1$ 110 66 init i status inenti multiarrest conservations 11000 ****** taken ti

Value Matrix V

• Since V is the contingency table, we can start from any pixel and find a shortest path to the first row!

Illustration for synthetic case

Energy matrix

Value matrix 45 8 4.5 3 5.5 6 40 35 18.5 13.5 34.5 30 22 30 20 20.5 19.5 34.5 30 25 20 36 43.5 46.5 30.5 43 15 10 39 42 35 38.5 36

Energy matrix

55	0	4 5	6	C	
0.C	8	4.5	0	3	- 25
13	9	30	27	19	- 20
6.5	7	6	12.5	8	- 15
16	24	27	11	13	10
3	6	4.5	8	5.5	5

Goal:

- Construct *value and path matrix* from the *energy matrix*
- Value matrix records the energy of the shortest path from the starting row to the current pixel

Energy matrix

30					
- 25	3	6	4.5	8	5.5
- 20	19	27	30	9	13
- 15	8	12.5	6	7	6.5
10	13	11	27	24	16
5	5.5	8	4.5	6	3

Goal 1:

- Construct *Value matrix* from the *energy matrix*
- Value matrix records the energy of the shortest path from the starting row to the current pixel
- Property: every entry encodes the minimal shortest path to that node from starting row

- Construct *Path matrix*
- The Path matrix records the immediate predecessor in the shortest path, for every node

e: energy function

5.5	8	4.5	6	3	- 25
13	9	30	27	19	- 20
6.5	7	6	12.5	8	- 15
16	24	27	11	13	10
3	6	4.5	8	5.5	5

Energy function

- Energy function records the cost of a pixel.
- Typically it is the image gradient magnitude

How to generate the two matrices?

6

3

Step1: Initializing two matrices

- Set value and path matrix *the same size* as the energy matrix
- Initialize its *first row of Value matrix* with that of the energy matrix
- Initialize its *first row of path matrix* to zero

Value matrix V 8 3 5.5 4.5 6

Step2: Propagation

• Start with 2nd row, and propagate row by row

Value matrix V

5.5	8	4.5	6	3	
?	13.5			22	
				30	
				43	
39	42	35	38.5	36	

Step2: Propagation

• Start with 2nd row

- Start with 2nd row
- Find the *neighbors* of the pixel in the previous row

Value matrix V

5.5	8	4.5	6	3	
	13.5				
20					
36					
39	42	35	38.5	36	

- Start with 2nd row
- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors

- Start with 2nd row
- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors, record it in Path matrix

- Start with 2nd row,
- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors
- Add the energy value of the pixel with the minimum

Value matrix V 8 3 5.5 4.5 6 34.5 30 22 18.5 13.5 20 ? 20.5

Step2: Propagation for every row

Neighborhoods of the pixel in previous row

Step2: Propagation for every row

• Find the *neighbors* of the pixel in the previous row

- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors

- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors, record it in Path matrix

- Find the *neighbors* of the pixel in the previous row
- Find the *minimum* among neighbors
- Add the energy value of the pixel with the minimum

Value matrix V

- Find the *neighbors* of the pixel in the previous row
- Get the *minimum* among neighbors
- Add the energy value of the pixel with the minimum

Step3: path resolving

Value matrix

E E	0	4 5	6	2	- 45
0.0	Õ	4.3	0	ు 	- 40
18.5	13.5	34.5	30	22	- 35
20	20.5	19.5	34.5	30	- 25
36	43.5	46.5	30.5	43	20
39	42	35	38.5	36	10 5

Path matrix

0	0	0	0	0	- 0.8
0	1	0	1	0	- 0.4
1	0	-1	1	0	.0
0	1	0	-1	0	-0.2
0	-1	1	0	-1	-0.6

- 40 38.5

Value matrix

- Find the *minimum* of the last row of the Value matrix,
- Find the *predecessor* of that pixel

5.5	8	4.5	6	3	Path matrix
18.5				22	
20				30	- 25 1 0 -1 1 0
36				43	
39	42	35	38.5	36	10 5

-0.2 -0.4 -0.6 -0.8

Value matrix

- Find the *minimum* of the last row of the Value matrix, ٠
- Find the *predecessor* of that pixel, using Path matrix ٠

					- 45
5.5				3	- 40
18.5				22	- 35
					- 30
20				30	- 25
					20
36			30.5	43	15
39	42	35	38.5	36	10
					5

Path matrix

0				0	-0.8
0				0	- 0.6
1				0	• 0.2
0				0	-0.5
0	-1	1	0	-1	-0.6
					-0.

• Move to its *predecessor*

					- 45
5.5				3	- 40
18.5				22	- 35
					- 30
20				30	- 25
			00.5	10	20
36	43.5	46.5	30.5	43	15
39	42	35	38.5	36	10
					5

• Follow *predecessor* of current pixel,

• Move to its *predecessor*

• Find the *predecessor* of current pixel

• Move to its *predecessor*

• Find the *predecessor* of current pixel

• Stop when reaching the *first row*

Energy matrix

Carved energy matrix

				30
5.5	8	6	3	- 25
13	30	27	19	- 20
6.5	7	12.5	8	15
16	24	27	13	10
3	6	8	5.5	5

Path matrix

Value matrix

• What if we want to remove a seam that ends on particular pixel?