
Exmples of resizing

820 × 546 × 3

420 × 546 × 3

Guess
• We use and for resizing the

given image
• Guess which one is for carving?

(a) (b) (c)

Expanded

Seam:

𝑖
𝑖-1

Energy matrix e

M

N

k

 1yS (i,y(i)) | i = 1,...,M | y(i) y(i) | k: s.t.

Seam Cost:

𝑖
𝑖-1

Energy matrix e

M

N

k

1

y y

i

S S i

M

() (())E = e

 1yS (i,y(i)) | i = 1,...,M | y(i) y(i) | k: s.t.

• Seam 𝑆𝑦: 𝑖, 𝑦 𝑖 |𝑖 = 1,⋯ ,𝑀 𝑠. 𝑡. 𝑦 𝑖 − 𝑦(𝑖 − 1) ≤ 𝑘

• Seam Cost:

• Goal:

0.08

0.46
0.12

𝑖
𝑖-1

Energy matrix e> 𝑘

M

N

1

y y

i

S S i

M

() (())E = e

yS S* min ()= E

Where does the energy matrix come from?

Energy matrix

For example: L1 norm of the edge gradients for the energy function

abs

+

abs

=

Energy matrix e

How to find the best seam?

• How many possibilities for Seam 𝑆𝑦?

𝑖
𝑖-1

Energy matrix e

𝑖

𝑖-1 • 1st row:

• 2nd row:

• 3rd row:

• Mth row:

𝑖+1

Idea 1: Brute force search

k

N

M

2 1k ()N

22 1k () N

12 1k M()() N

N

𝑖
𝑖-1

Energy matrix e

𝑖

𝑖-1 • Mth row:

𝑖+1

Idea 1: Brute force search

k

M

N

• Given 𝐌 = 768, 𝐍 = 1024, 𝑘 = 1

1024 × 3767• How many possibilities for Seam 𝑆𝑦?

12 1k M()() N

Too many possibilities!

1024 × 3767

Idea 2: Find the shortest path from the first row to

the last row on the energy map

M

N

𝑖 row

𝑖 + 1 row

Construct the directed graph G where

each pixel (node) is connected to the (2k+1) neighbors in the next row

Shortest Path

1st row

(u)V

•

• Growing with `least-

• Construct with value encoding the shortest path

cost to each node in

(u)V

S

S

S

Shortest Path

1st row

• Initialize to include the first row, and set the Value function

For the first row, the shortest path contains only itself

(u) (u),uV = e S

S

Shortest Path

1st row
S

~

u ,v

v argmin[(u) (v)]
S S

= V e is a graph edgewhere (u v)

~

S

~

S S

v

u

Shortest Path

Iterate: find the step expansion of least resistant from

1st row
S

~

S

~

S S

v

u

Remember the path back from (v u)

~

u ,v

v argmin[(u) (v)]
S S

= V e is a graph edgewhere (u v)

(v) uP

Shortest Path

•

• Updating the Value function:

1st row

~ ~

v , - v .S = S S S

~

v

(v) min[(u) (v)]
S

V = V e

S

~

S

: Is the contingent cost of the shortest path connecting
the pixel v to the first row

(v) V E

Shortest Path

•

• Updating the Value function:

• Until reaching one of the pixels on the last row.

1st row
S

~

S

~ ~

v , - v .S = S S S

~

v

(v) min[(u) (v)]
S

V = V e

Shortest Path

(u) VValue function Path Matrix PEnergy Matrix e

Frontier growing row by row

Idea 3: Dynamic programming!

M

N

Dynamic Programming

𝑖 row

𝑖 + 1 row

Use the same graph structure

Propagate the frontier row by row to construct the Value Matrix

Dynamic Programming

1st row

• Still start from first row, and initialize the Value function

1 j 1 j(,) (,)V = e

• Set the Path function

1 j 0(,)P =

Path Matrix P

Value Matrix V
Dynamic Programming

1st row

• Propagate to the second row, and update the value matrix

2 j 2 j (1,j-k),…, (1,j),…, (1,j+k))(,) (,) min(V = e V V V

is the contingent cost of the shortest path connecting the pixel
(2,j) to the first row

• Updated

2 j(,) :V

Dynamic Programming

• Propagate to the second row, and update the value matrix

• Set the Path function

1st row
• Updated

Path Matrix P

Value Matrix V

2 j 2 j (1,j-k),…, (1,j),…, (1,j+k))(,) (,) min(V = e V V V

2 j (1,j-k),…, (1,j),…, (1,j+k))(,) min(P = arg V V V

Dynamic Programming

• Updated

• Set the Path function

i j i j (i-1,j-k),…, (i-1,j),…, (i-1,j+k))(,) (,) min(V = e V V V

i j (i-1,j-k),…, (i-1,j),…, (i-1,j+k))(,) min(P = arg V V V

• Iteratively propagate to the ith row, and update the value matrix

Dynamic Programming

Path Matrix P

Value Matrix V

Energy Matrix e

Dynamic Programming

-1 0 1

Value Matrix V

0

Path Matrix P

• Localize the minimum of the last row of

M :(,)argmin V

Dynamic Programming

-1 0 1

Value Matrix V

0

Path Matrix P

Dynamic Programming

-1 0 1

Value Matrix V

1

0

Path Matrix P

Dynamic Programming

-1 0 1

Value Matrix V

1

0

Path Matrix P

0

0

1

0

Path Matrix P

Value Matrix V

0

0

1

0

Path Matrix P

Value Matrix V

-1

0

1

• Since V is the contingency table, we can start from any pixel and find a shortest

path to the first row!

Illustration for synthetic case

Energy matrix

5.5 8 4.5 6 3

13 9 30 27 19

6.5 7 6 12.5 8

16 24 27 11 13

3 6 4.5 8 5.5

Energy matrix

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

Goal:
• Construct value and path matrix from the energy matrix
• Value matrix records the energy of the shortest path from the starting row to the

current pixel

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

Goal 1:
• Construct Value matrix from the energy matrix
• Value matrix records the energy of the shortest path from the starting row to the

current pixel
• Property: every entry encodes the minimal shortest path to that node from starting row

5.5 8 4.5 6 3

13 9 30 27 19

6.5 7 6 12.5 8

16 24 27 11 13

3 6 4.5 8 5.5

Energy matrix

-1 0 1
Goal 2:

• Construct Path matrix
• The Path matrix records the immediate predecessor in the shortest path, for every node

Energy function

• Energy function records the
cost of a pixel.

• Typically it is the image
gradient magnitude

5.5 8 4.5 6 3

13 9 30 27 19

6.5 7 6 12.5 8

16 24 27 11 13

3 6 4.5 8 5.5

𝑒: energy function

How to generate the two matrices?

• Set value and path matrix the same size as the energy matrix
• Initialize its first row of Value matrix with that of the energy matrix
• Initialize its first row of path matrix to zero

5.5 8 4.5 6 3

13 9 30 27 19

Energy matrix

Step1: Initializing two matrices

• Start with 2nd row, and propagate row by row

Step2: Propagation

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

• Start with 2nd row

Step2: Propagation

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?

• Start with 2nd row
• Find the neighbors of the pixel in the previous row

Step2: Propagation

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

Neighborhoods of the pixel
in previous row

• Start with 2nd row
• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors

Step2: Propagation

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

5.5

8

+ e 2,1

V 2,1 = min V (1,1)
V(1,2)

√

• Start with 2nd row
• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors, record it in Path matrix

Step2: Propagation

5.5

8

13+ e 2,1

V 2,1 = min V (1,1)
V(1,2)

√

5.5 8 4.5 6 3

13 9 30 27 19

Energy matrix

• Start with 2nd row,
• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors
• Add the energy value of the pixel with the minimum

Step2: Propagation

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

13+5.5
= 18.5

Step2: Propagation for every row

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?20 20.5

• Find the neighbors of the pixel in the previous row

Step2: Propagation for every row

Neighborhoods of the pixel
in previous row

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?20 20.5

• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors

34.5

30

+ e 𝑖, 𝑗

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?20 20.5

13.5

min

𝑉(𝑖 − 1, 𝑗 − 1)
V (𝑖 − 1, 𝑗)

V(𝑖 − 1, 𝑗 + 1)

√

• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors, record it in Path matrix

• Find the neighbors of the pixel in the previous row
• Find the minimum among neighbors
• Add the energy value of the pixel with the minimum

34.5

30

6+ e 𝑖, 𝑗

13.5

min

𝑉(𝑖 − 1, 𝑗 − 1)
V (𝑖 − 1, 𝑗)

V(𝑖 − 1, 𝑗 + 1)

√

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?20 20.5

5.5 8 4.5 6 3

13 9 30 27 19

6.5 7 6 12.5 8

• Find the neighbors of the pixel in the previous row

• Get the minimum among neighbors

• Add the energy value of the pixel with the minimum

Value matrix V

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

?20 20.513.5+6
= 19.5

5.5 8 4.5 6 3

13 9 30 27 19

6.5 7 6 12.5 8

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 -1 1 0

0 1 0 -1 0

0 -1 1 0 -1

Step3: path resolving

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

• Find the minimum of the last row of the Value matrix,
• Find the predecessor of that pixel

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 -1 1 0

0 1 0 -1 0

0 -1 0 -11

• Find the minimum of the last row of the Value matrix,
• Find the predecessor of that pixel, using Path matrix

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 30.5 43

39 42 35 38.5 36

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 -1 1 0

0 1 0 -1 0

0 -1 0 -11

• Move to its predecessor

-1 0 1

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 19.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

• Follow predecessor of current pixel,

-1 0 1

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 -1 1 0

0 1 0

0 -1 0 -1

0-1

1

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

19.5

30.5

• Move to its predecessor

-1 0 1

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 -1 1 0

0 1 0

0 -1 0 -1

0-1

1

Value matrix

5.5 8 4.5 6 3

18.5 13.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

• Find the predecessor of current pixel

-1 0 1

Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

Value matrix

5.5 8 4.5 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

13.5

30.5

19.5

• Move to its predecessor

-1 0 1

Value matrix

5.5 8 4.5 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

13.5
Path matrix

0 0 0 0 0

0 1 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

• Find the predecessor of current pixel

-1 0 1

Path matrix

0 0 0 0 0

0 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

1

Value matrix

5.5 8 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

4.5

30.5

19.5

13.5

• Stop when reaching the first row

-1 0 1

Value matrix

5.5 8 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

13.5

4.5

Path matrix

0 0 0 0 0

0 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

1

• Seam carving is to delete the path with minimum cost

Value matrix

5.5 8 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

13.5

4.5

Path matrix

0 0 0 0

0 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

1

0

• Seam carving is to delete the path with minimum cost

Value matrix

5.5 8 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

13.5

4.5

Path matrix

0 0 0 0

0 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

1

0

Energy matrix

• Seam carving is to delete the path with minimum cost

Carved energy matrix

• Seam carving is to delete the path with minimum cost

5.5 8 6 3

13 30 27 19

6.5 7 12.5 8

16 24 27 13

3 6 8 5.5

• What if we want to remove a seam that ends on particular pixel?

Value matrix

5.5 8 6 3

18.5 34.5 30 22

20 20.5 34.5 30

36 43.5 46.5 43

39 42 35 38.5 36

30.5

19.5

13.5

4.5

Path matrix

0 0 0 0

0 0 1 0

1 0 1 0

0 1 0

0 -1 0 -1

0-1

1

-1

1

0

