

How to blend two images?

image blending: image surgery...

- cutting from one image (which we will cover in details on segmentation)
- reconstructing onto the new image

Blend = Cut and Paste images

Image blending is an art of ... faking images, hiding evidence of image surgery, making it looks natural

Direct Copy and Paste

Direct attempt: not so good!

-- we created an artificial boundary between the pasted region

Challenge: color and brightness mismatch

Blue channel value of the vertical line

Big change in intensity

Big change in intensity creates new image boundary...

- any ideas on how to remove that boundary?

Alpha channel encodes the transparency of the object

Copy - paste is a special kind of alpha blending - binary mask

copy - paste

alpha blending

Alpha blending can deal with transparent objects

copy - paste

alpha blending

Alpha blending hacking

Blue channel value of the vertical line

Continuous change, but still a visually un-natural pattern in intensity

Solution: Copy only gradient + Recreate

Gradient Blending: No more intensity change!

Blue channel value of the vertical line

Smooth transition

Image Blending

copy - paste

alpha blending

Gradient blending

Results of gradient blending

Source (figure) Target (background)

Result

Color of the hat blends into the background -- successful image surgery... with interesting side-affect

Why use the gradients to recreate images

Gradients domain

- Gradient captures everything important about shape and shading
- It contains the microscope texture of the object.
- It encodes subtle changes of illumination.
- In Pyramid Blending, we decomposed our image into 2nd derivatives (Laplacian) which encodes the shape perception.

• We blend the gradient magnitude, to create a seamless 'edge' image

 We blend the gradient angle images, to make sure both the microscopic texture, shape of object boundary, and the illumination changes are smoothly integrated.

Image gradients blending

How to recreate the original image from gradient?

zoom in a small patch

g

$$a - b = \nabla_x I(a)$$

$$\nabla_y I(a)$$

$$\nabla_y I(\mathbf{a})$$

2 equations with 3 unknowns, need constraints

• Keep the value on boundary $\partial\Omega$ the same

Least Square Problem

- Minimize the loss with respect to all pixels in the region Ω
- Keep the boundary $\partial\Omega$ the same

Least square solution

Solution on Pixels

The convolutional kernel for Laplacian operator

Special case

• When the $\frac{\nabla_x \mathbf{I}}{\nabla_y \mathbf{I}}$ are directly computed from an image \mathbf{I}_{Source} (without editing)

- Keep the value on the boundary $\partial \Omega$ the same
- Solve the equation for each channel (RGB) separately

 There is one equation matching the Laplacian values from the source to the target

How to solve this inverse Laplacian problem?

An example

For the purpose of displaying, we use alpha mask for f and the background of g. The RGB value for f is (255,0,0), for the background of g is (0,0,0)

Mask for merging

Direct copy and paste

Keeping f the same on the boundary

Keep f the same on the boundary $\partial\Omega$

Laplacian of the source

Before copying, we first index the pixels

Copying and *reshaping* the Laplacian of source

 $\begin{cases} \Delta \mathbf{f} = \mathbf{b} \text{ in } \Omega \\ \mathbf{f}|_{\partial \Omega} \text{ keeps same} \end{cases}$

$\Delta f = b$

△ is a linear operator...

$\mathbf{A}\mathbf{f} = \mathbf{b}$

...We can use a matrix **A** to encode it!

Indexing the unknowns

Laplacian as a matrix?

Matrix A encoding the Laplacian operator

Matrix A encoding the Laplacian operator

Matrix A: Laplacian operator

When the pixel is on the boundary

How to deal with the knowns Boundary Values?

Move the boundary value of knowns to **b** side!

$\mathbf{A}\mathbf{f} = \mathbf{b}$

Guess what's our blended image?

Let's summarize with a real image

Step1. Indexing the unknowns in Target

N is the number of unknowns

Step2. Copying the gradient from source

Gradient magnitude

Gradient angle

Step2. Copying the gradient from source

Step2. Compute the Laplacian from source

Source image

Laplacian

Step2. Copying the gradient from source

Step2. Cropping the masked Laplacian

Step3. Constructing matrix A from the Laplacian operator

Step3. Constructing matrix A from the Laplacian operator

boundary value

Step4. Solving the linear equation and copy the values back to target

