## Morphing = Object Averaging







"an average" between two objects

Not an average of two *images of objects...*...but an image of the *average object!* 

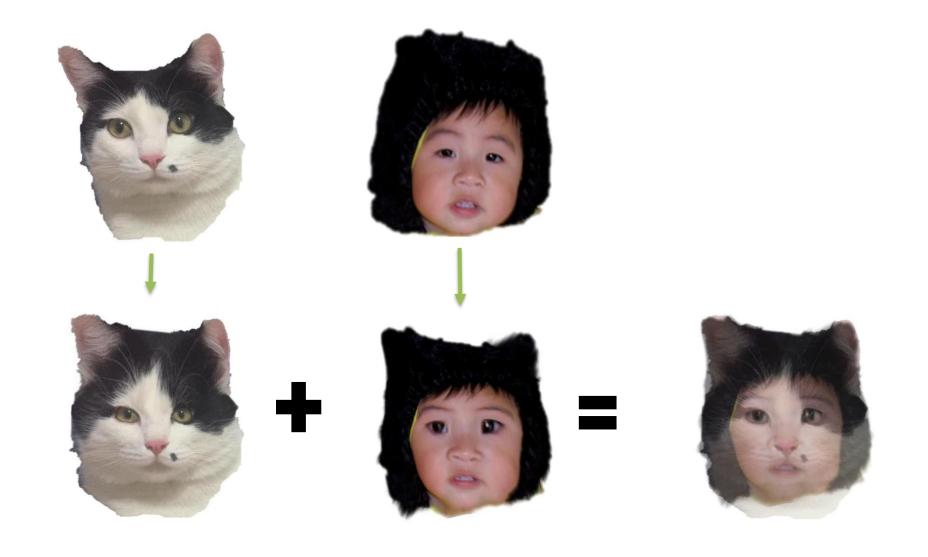
## Morphing = Object Averaging



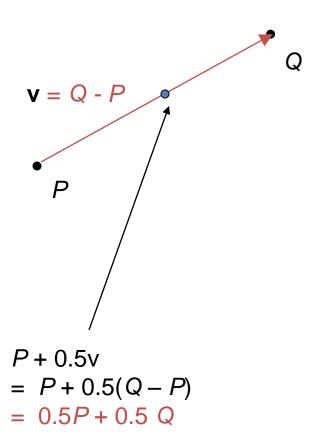
How do we know what the average object looks like?

- We haven't a clue!
- But we can often fake something reasonable

## Morphing = Warping + Cross Dissolving

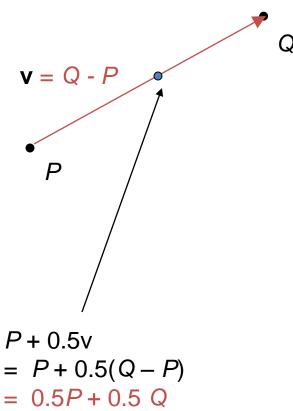


What's the average of P and Q?

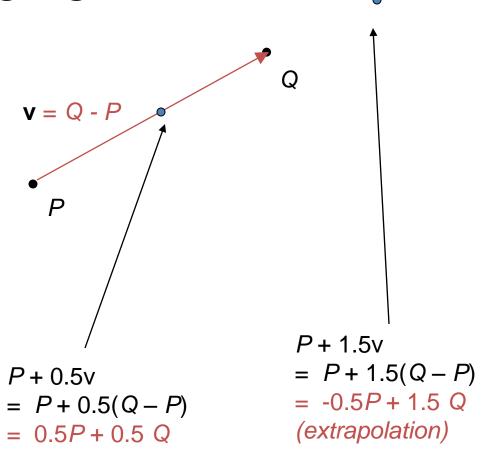


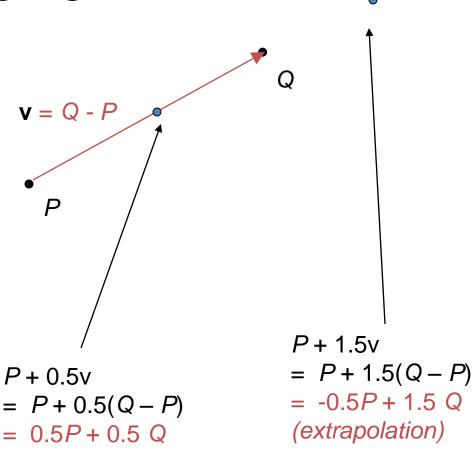
What's the average of P and Q?

Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b=1So aP+bQ = aP+(1-a)Q



$$P + 0.5v$$
  
=  $P + 0.5(Q - P)$   
=  $0.5P + 0.5Q$ 





- P and Q can be anything:
  - points on a plane (2D) or in space (3D)
  - Colors in RGB or HSV (3D)
  - Whole images (m-by-n D)... etc.

#### **Averaging Images: Cross-Dissolve**







Interpolate whole images:

$$Image_{halfway} = (1-t)*Image_1 + t*image_2$$

This is called **cross-dissolve** in film industry

#### **Averaging Images: Cross-Dissolve**



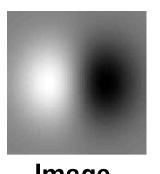




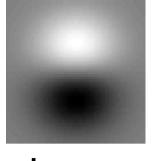
Interpolate whole images:

$$Image_{halfwav} = (1-t)*Image_1 + t*image_2$$

This is called **cross-dissolve** in film industry



**Averaging Images = Rotating Objects** 



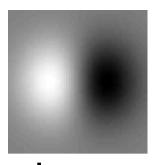
Image<sub>1</sub>

Image<sub>2</sub>

t = 1

$$t = 0$$

$$t = 0.5$$



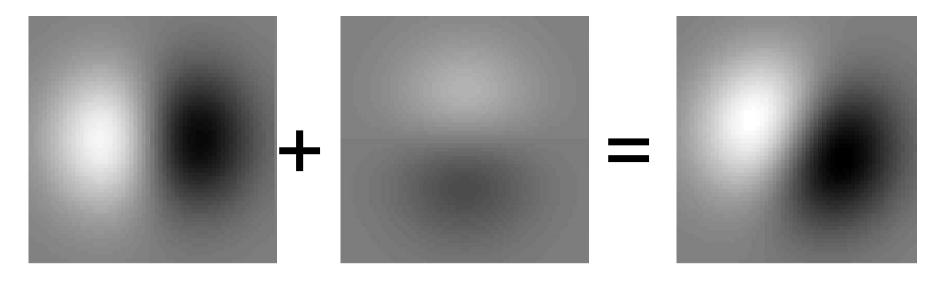
**Averaging Images = Rotating Objects** 

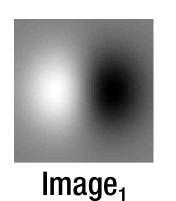
Image<sub>1</sub>

 $Image_2$ 

$$t = 0$$

$$t = 0.3$$





**Averaging Images = Rotating Objects** 

 $Image_2$ 

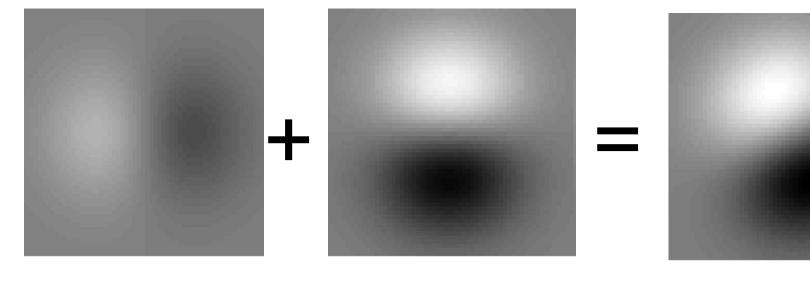
mago

(1-t)\*Image<sub>1</sub>

t = 0

$$t = 0.7$$

$$t = 1$$



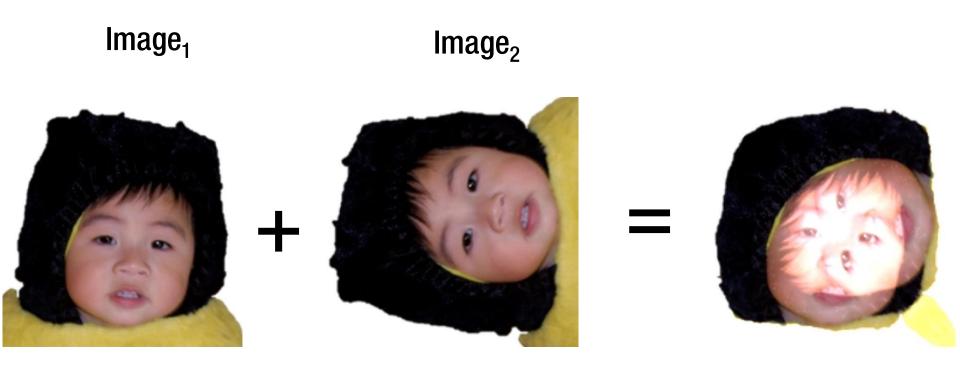
t\*Image<sub>2</sub>

**Image**<sub>halfway</sub>

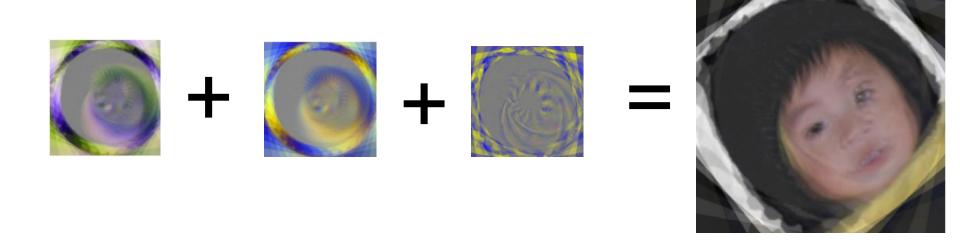
 $\frac{\text{Image}_1}{\text{Hage}_2} + \frac{\text{Image}_2}{\text{Image}_2} = ?$ 

Image<sub>1</sub> Image<sub>2</sub>



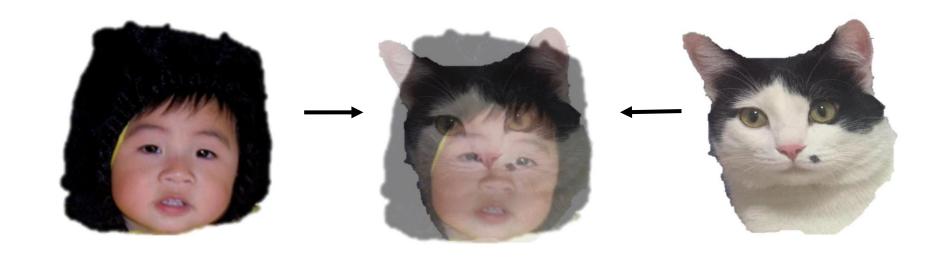


**Averaging Images != Rotating Complex Objects** 



**Averaging 'Eigen' Images = Rotating Objects** 

## **Cat-Baby Averaging**



Object Averaging with feature matching!

Nose to nose, eye to eye, mouth to mouth, etc.

This is a non-parametric warp

# **Cat-Baby Averaging**



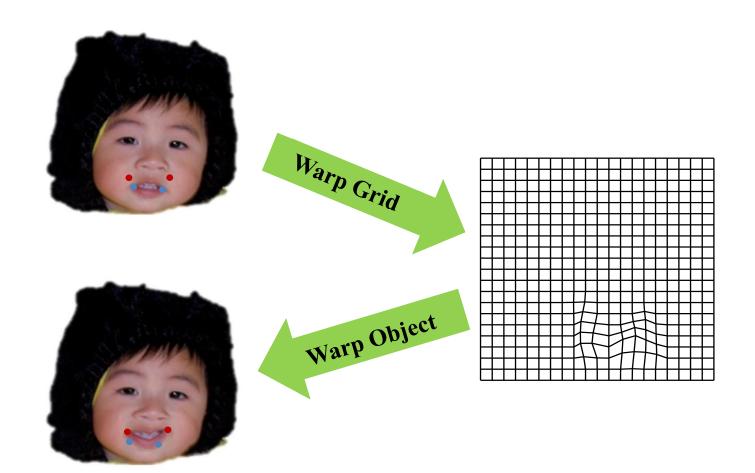
Object Averaging with feature matching (warping)!

- Nose to nose, eye to eye, mouth to mouth, etc.
- This is a non-parametric warp

#### Warping, then cross-dissolve



## Image warping – non-parametric



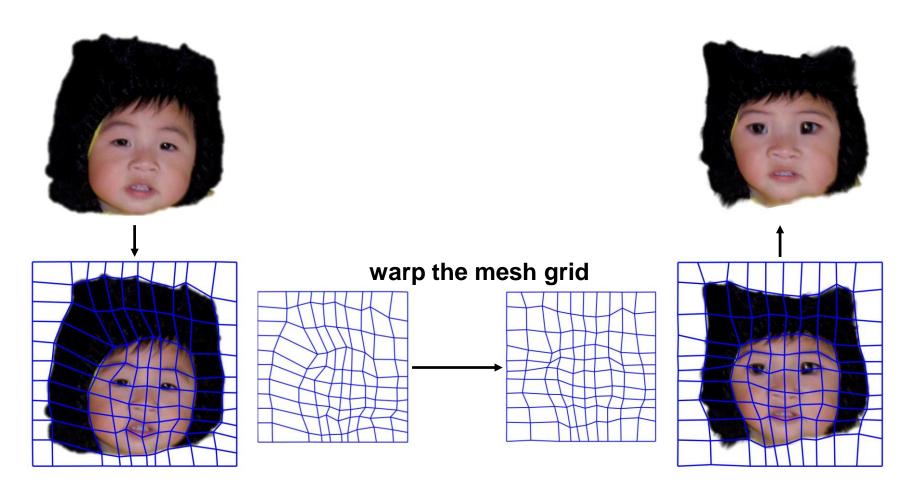
## Image warping idea 1: dense flow



Displacement vector (u,v) for each pixel.

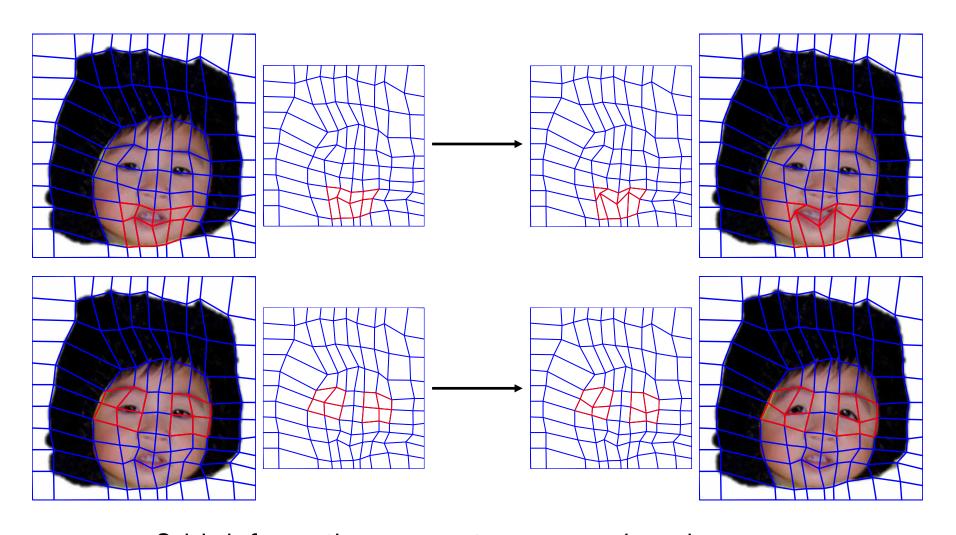
Great details... but too much work, let's simply it to mesh grid

# Image warping idea 2: dense grid



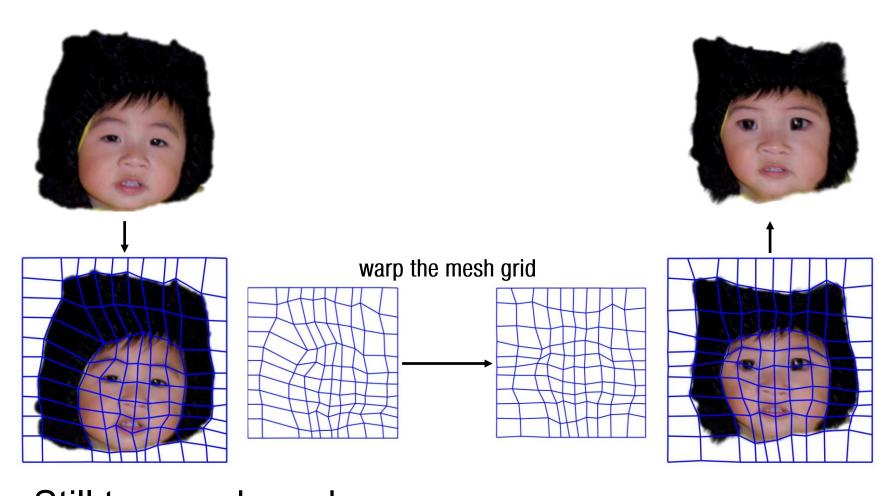
Define and manipulate the mesh grid

# Image warping idea 2 : dense grid



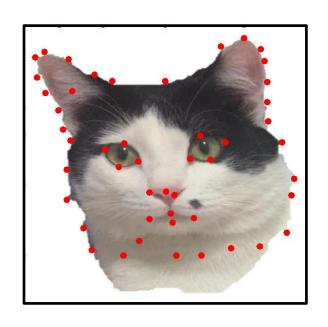
Grid deformation generates expression change

# Image warping idea 2: dense grid



Still too much work... simplify it to sparse control points and triangles

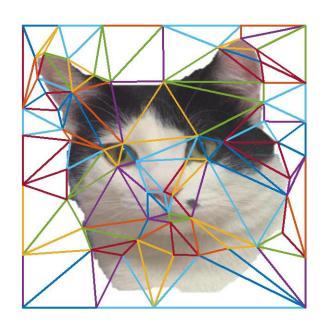
#### Image warping idea 3: sparse points

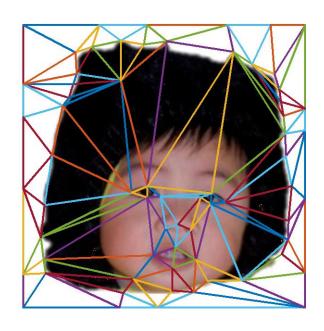




Specify sparse points and their correspondence

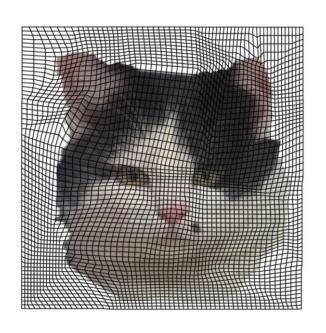
#### Image warping idea 3 : sparse points

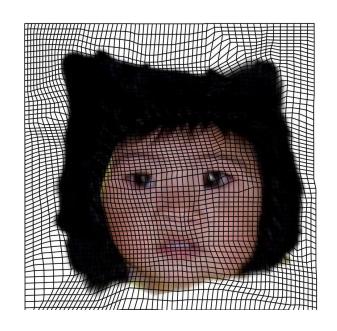




- Define a triangular mesh over the feature points
- Triangle-to-triangle correspondences
- Warp each triangle separately from source to destination

#### From sparse points to dense grid

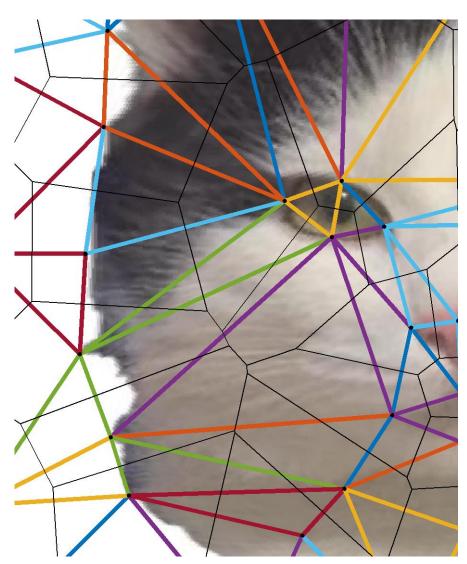




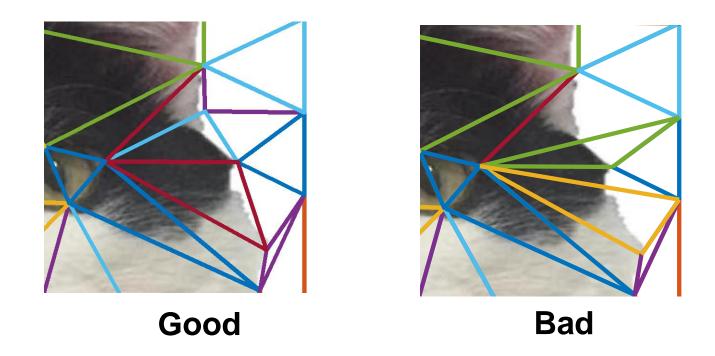
 Warping on triangulation corresponds to warping on dense grid, and dense pixel flow

## **Delaunay Triangulation**

- Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.
- The DT may be constructed in O(nlogn) time.
- This is what Matlab's <u>delaunay</u> function uses.

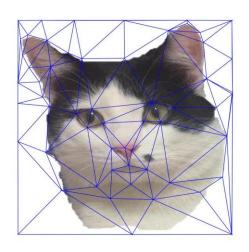


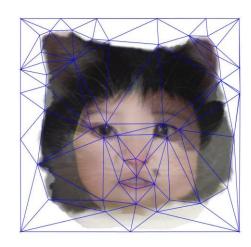
#### What is good feature points

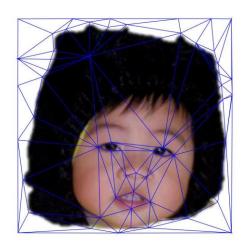


- The triangulation is consistent with image boundary
  - Texture regions won't fade into the background when morphing
- Maintain the relationship between parts

#### **Triangular Mesh**



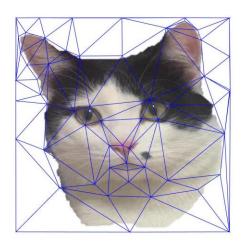


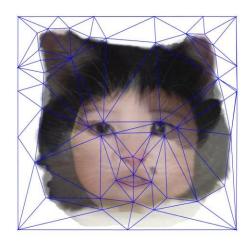


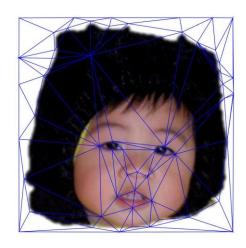
- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
  - Same mesh in both images!
  - Now we have triangle-to-triangle correspondences

## Warp interpolation

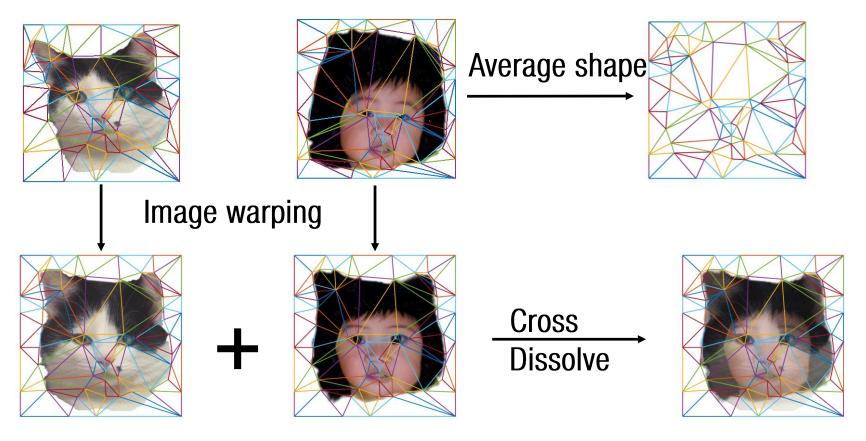
- How do we create an intermediate warp at time t?
  - Assume t = [0,1]
  - Simple linear interpolation of each feature pair
  - (1-t)\*p1+t\*p0 for corresponding features p0 and p1





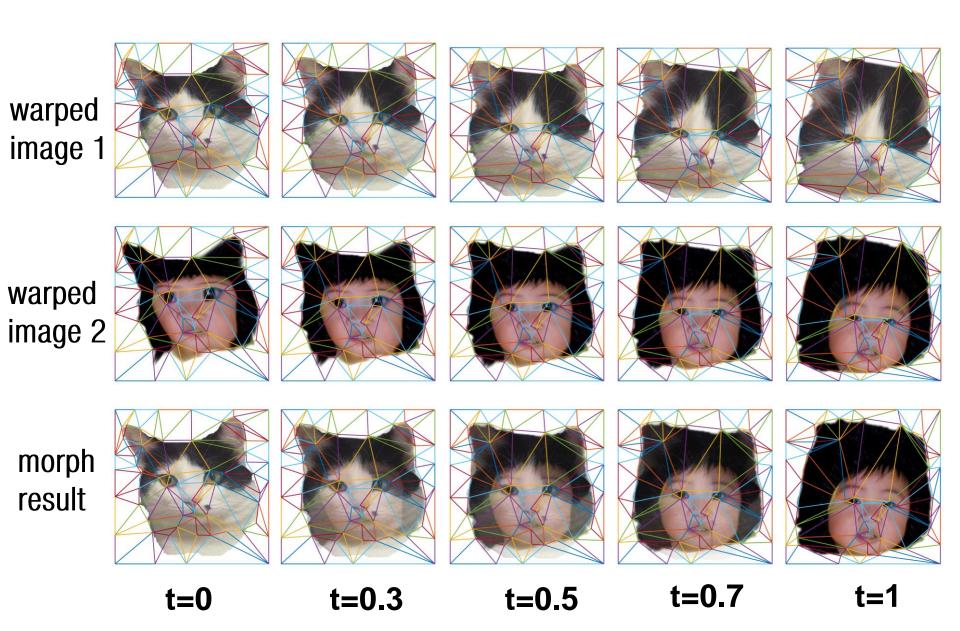


#### Morphing = Warping + Cross-dissolve

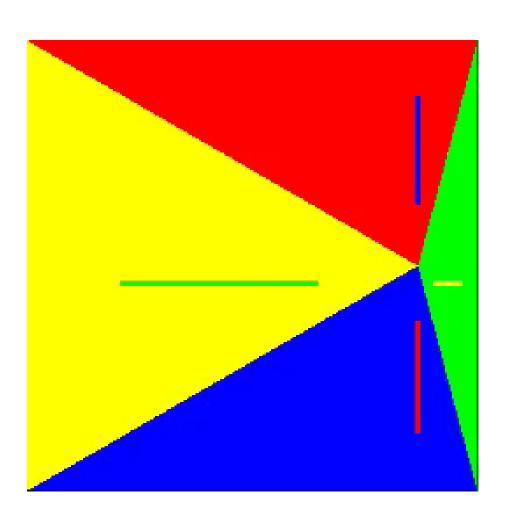


- For each time t, define the intermediate shape
  - $p_t = (1 t) \times p_1 + t \times p_2$
  - triangulation doesn't change
- Warp both image to the intermediate shape
- Dissolve image =  $(1-t)\times image_1 + t\times Image_2$

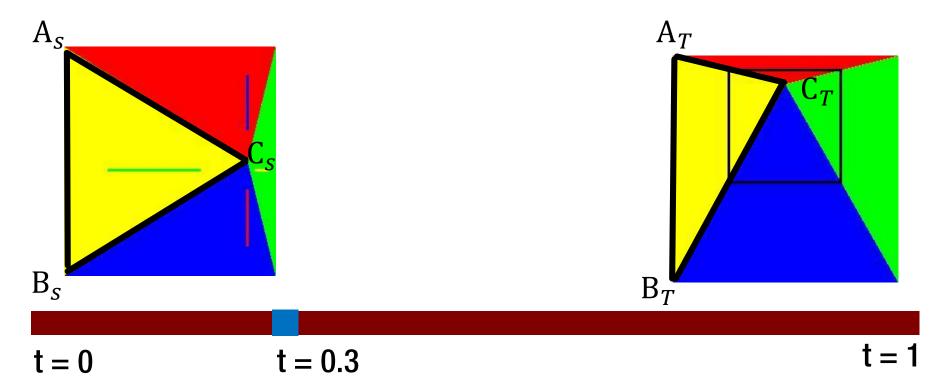
### **Morphing Sequence**



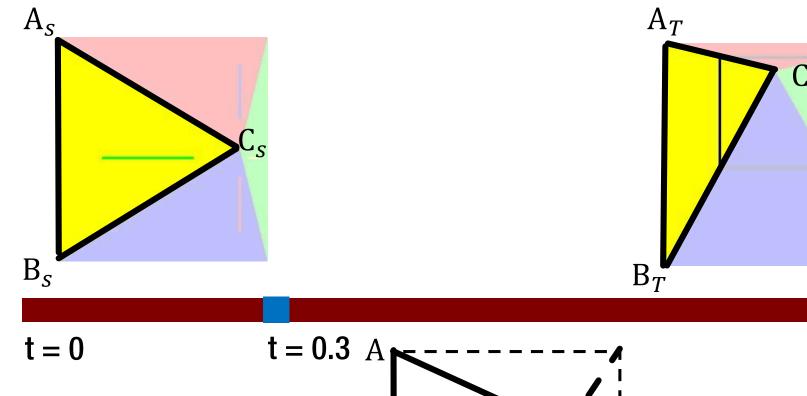
# An Example



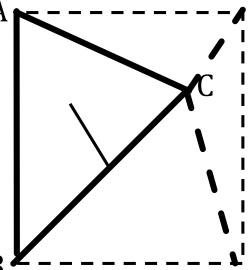
# Morphing



#### Step 1: Triangle interpolation

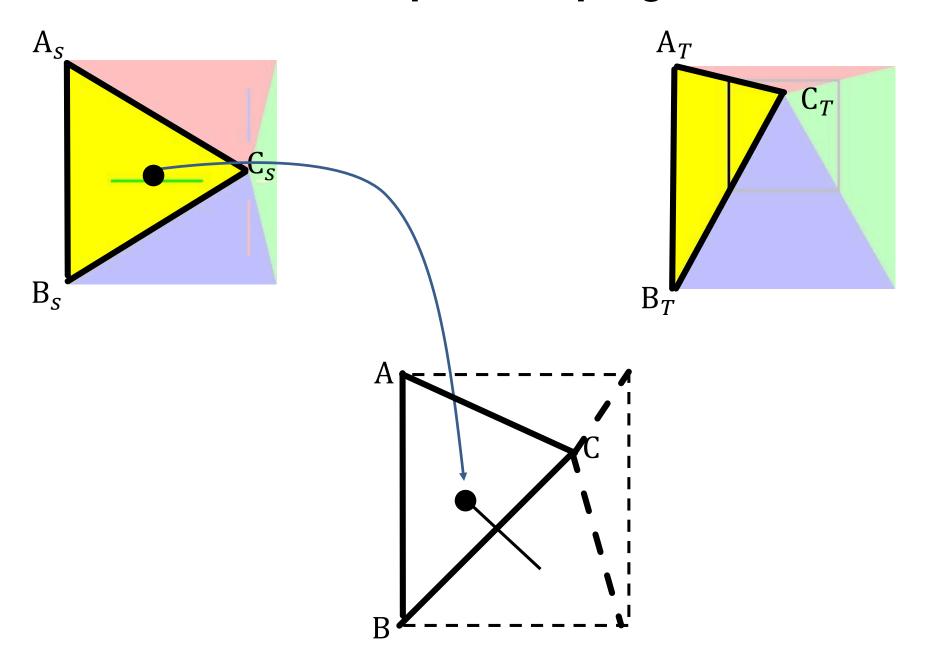


$$\begin{aligned} \mathbf{A}_t &= (1-t)\mathbf{A}_S + t\mathbf{A}_T \\ \mathbf{B}_t &= (1-t)\mathbf{B}_S + t\mathbf{B}_T \\ \mathbf{C}_t &= (1-t)\mathbf{C}_S + t\mathbf{C}_T \end{aligned}$$

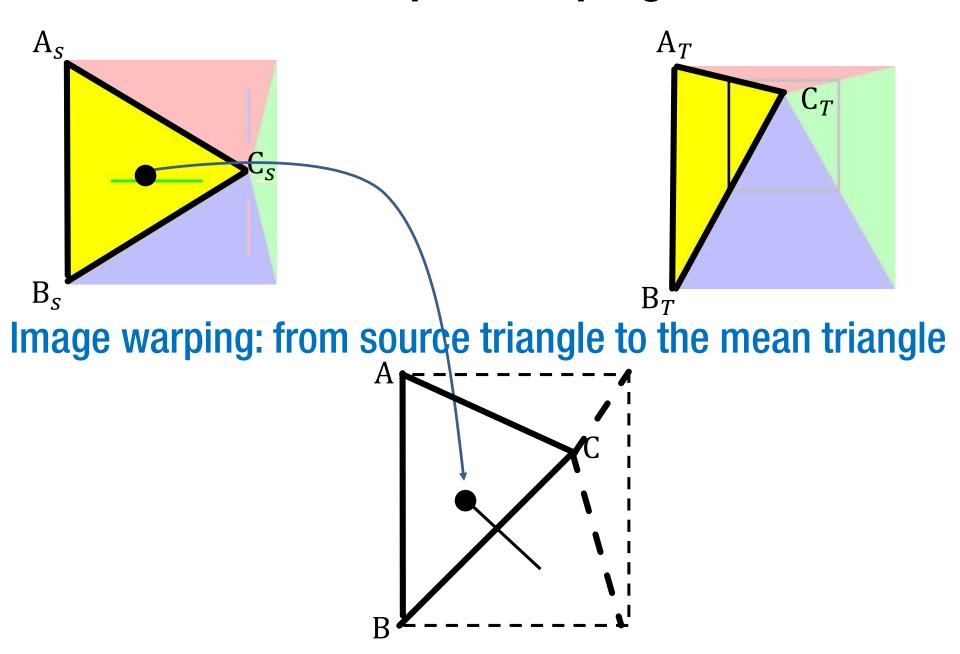


t = 1

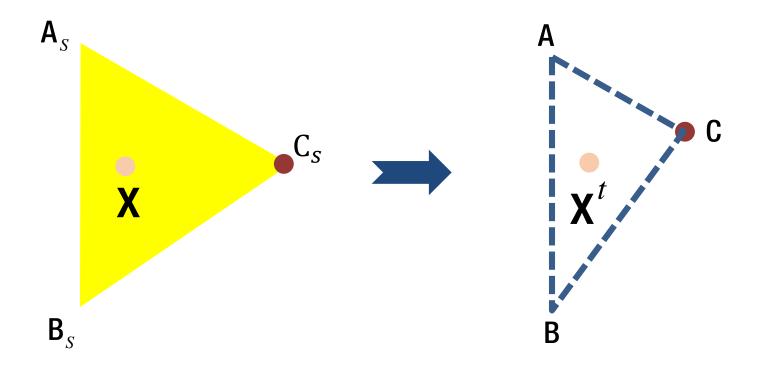
# Step 2: Warping



#### Step 2: Warping

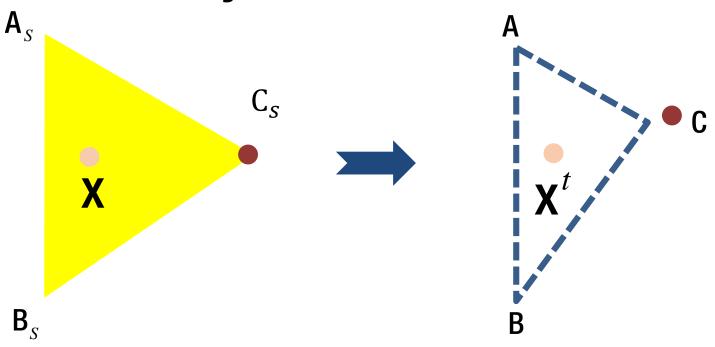


#### Triangle warping = Affine transform



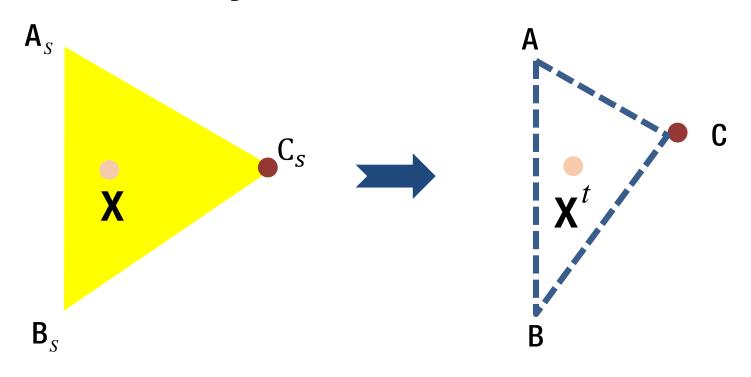
Affine transform is a pixel transportation  $X \rightarrow X^{I}$ It is controlled by the movement of the three vertices of the triangle

#### **Barycentric Coordinates**

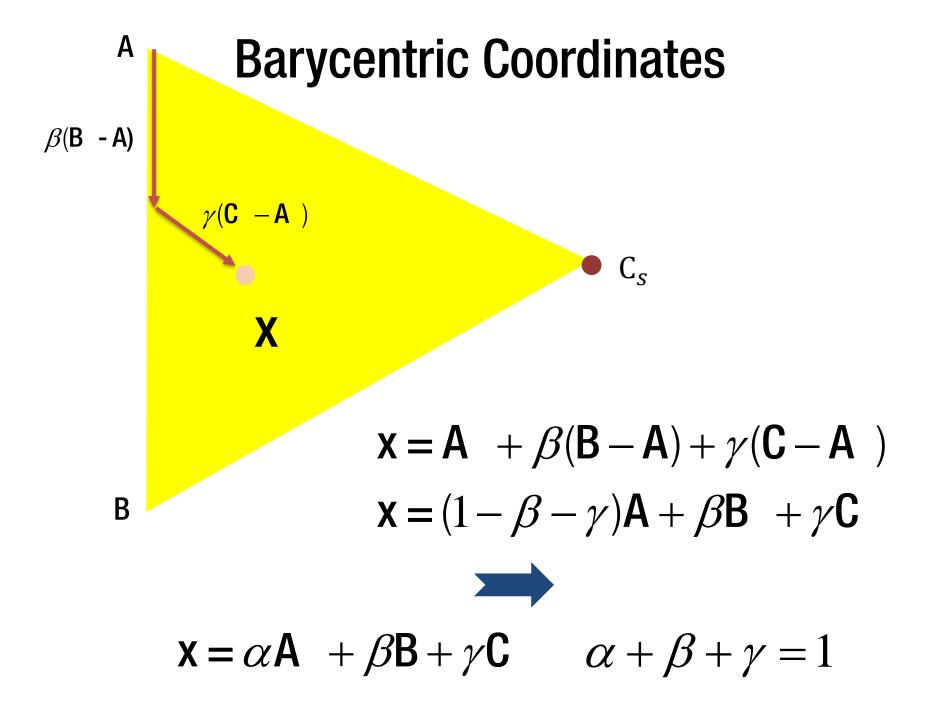


Each point **X** has an invariant representation with respect to the three vertices.

#### **Barycentric Coordinates**



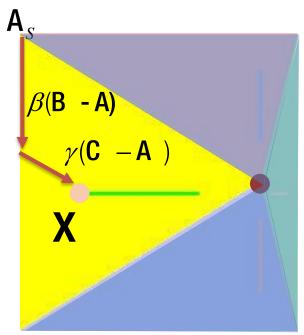
$$\mathbf{x} = \alpha \mathbf{A}_{S} + \beta \mathbf{B}_{S} + \gamma \mathbf{C}_{S} \qquad \mathbf{x}^{t} = \alpha \mathbf{A}_{t} + \beta \mathbf{B}_{t} + \gamma \mathbf{C}_{t}$$
$$\alpha + \beta + \gamma = 1$$



# **Barycentric Coordinates** $\mathbf{x} = \mathbf{A} + \beta(\mathbf{B} - \mathbf{A}) + \gamma(\mathbf{C} - \mathbf{A})$

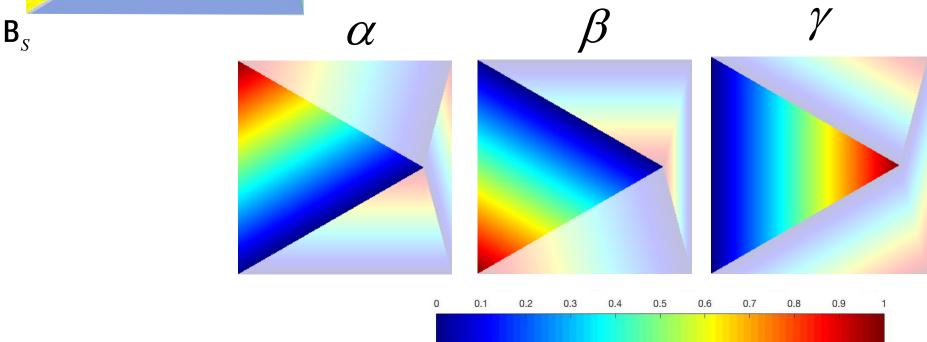
$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 linear equations in 3 unknowns

 $B_{S}$ 



#### **Barycentric coordinate**

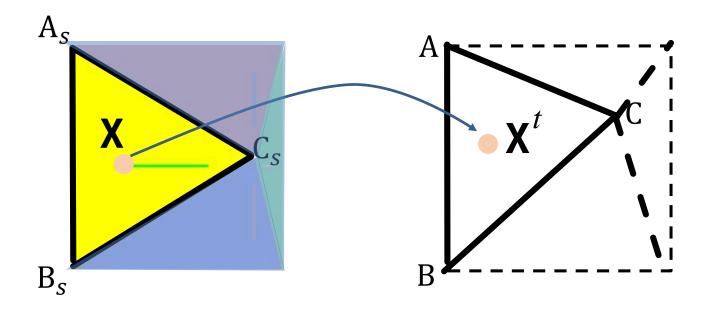
$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



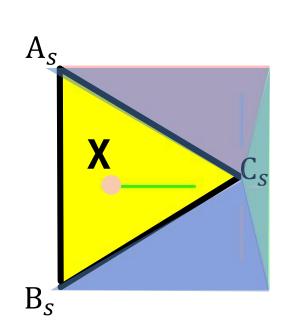
#### Warping with Barycentric Coordinate

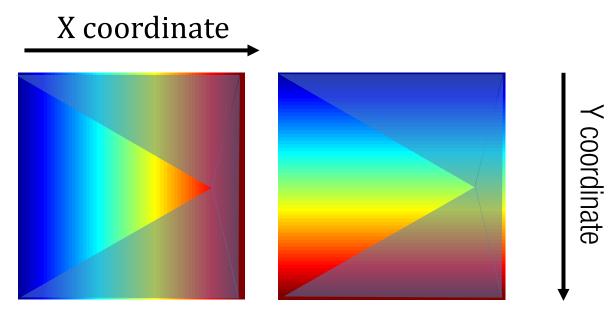
$$\mathbf{X} = \alpha \mathbf{A}_S + \beta \mathbf{B}_S + \gamma \mathbf{C}_S$$

$$\mathbf{X}^t = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

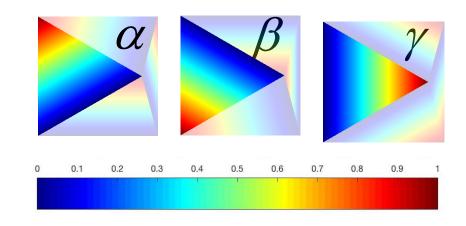


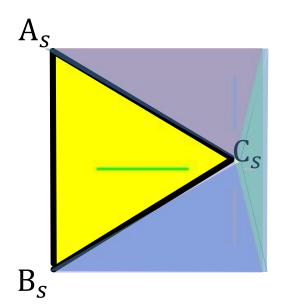
# Warping with Barycentric Coordinate

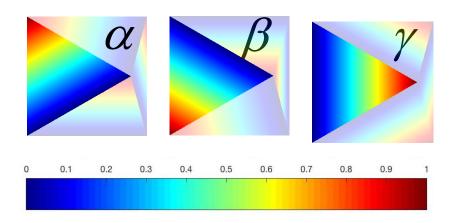


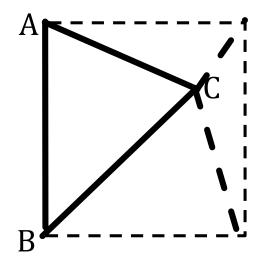


$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



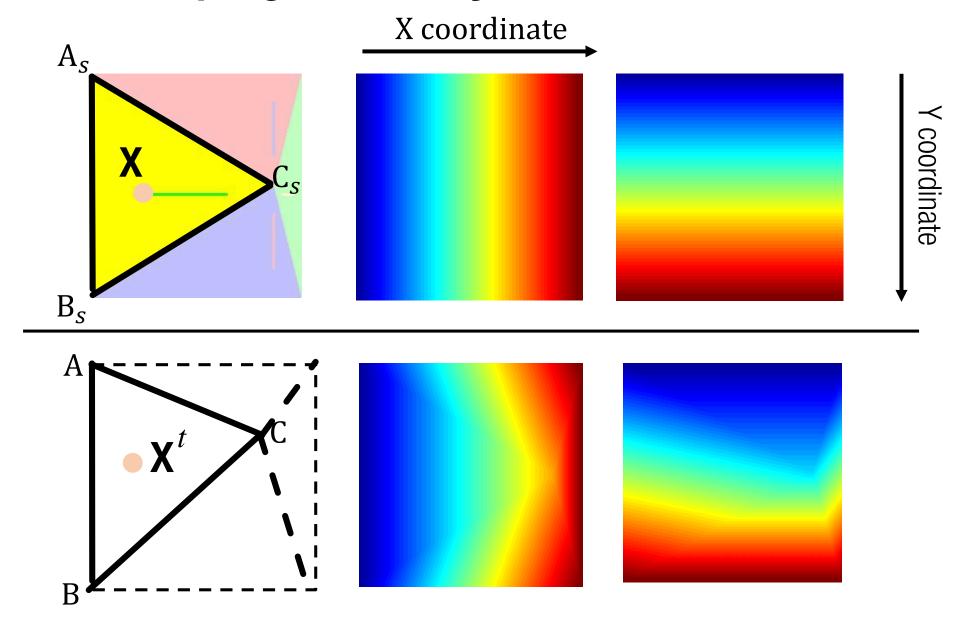




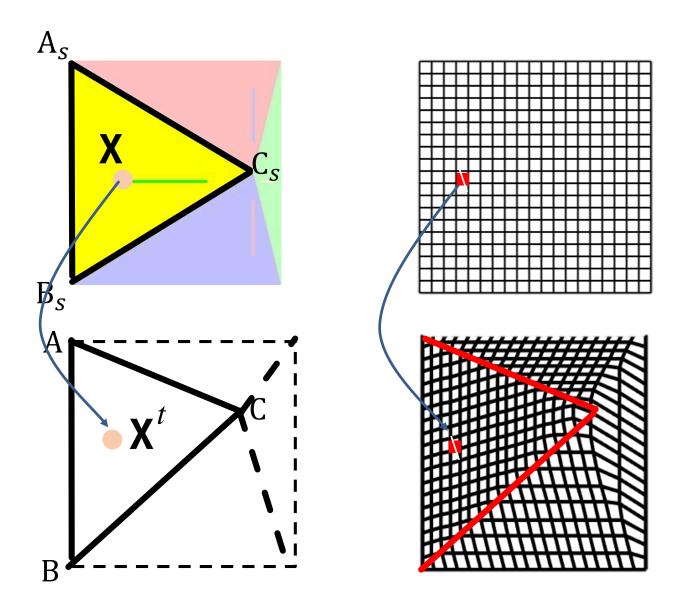


 $\mathbf{x}_t = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$ 

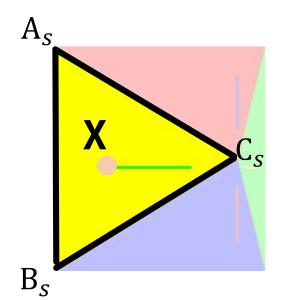
#### Warping with Barycentric Coordinate

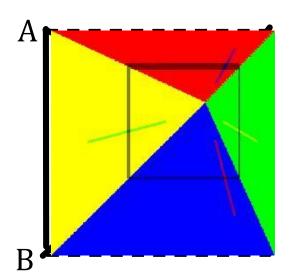


### Grids before and after warping

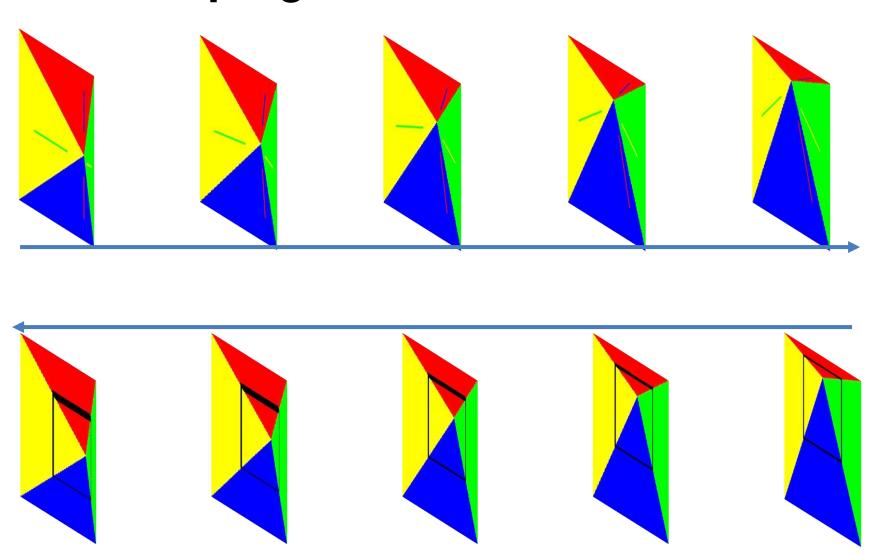


## Step 3: Average warped image

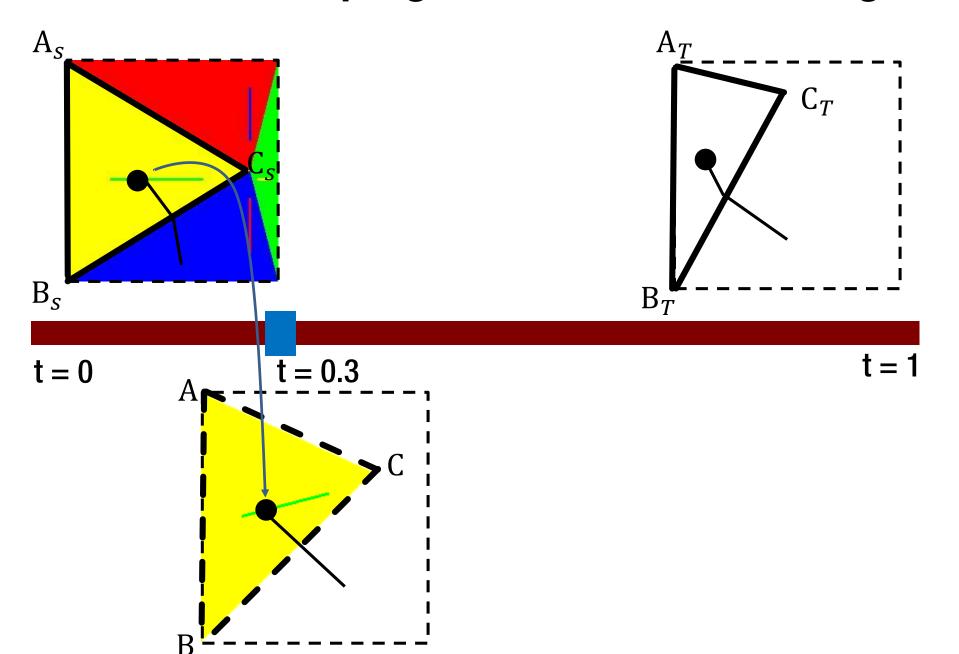




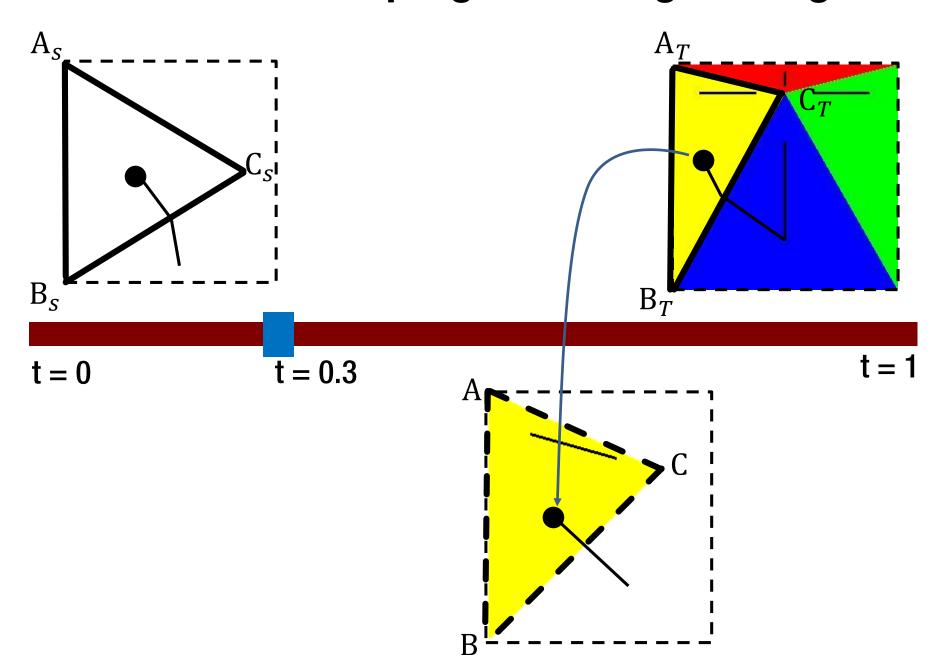
# Warping and Cross Dissolve



#### Inverse warping from the source image



#### Inverse warping from target image



#### Step 3: averaging warped image



#### Warping, then cross-dissolve

