Morphing = Object Averaging

"an average" between two objects

Not an average of two *images of objects...*...but an image of the *average object!*

Morphing = Object Averaging

How do we know what the average object looks like?

- We haven't a clue!
- But we can often fake something reasonable

Morphing = Warping + Cross Dissolving

What's the average of P and Q?

What's the average of P and Q?

Linear Interpolation (Affine Combination): New point aP + bQ, defined only when a+b=1So aP+bQ = aP+(1-a)Q

$$P + 0.5v$$

= $P + 0.5(Q - P)$
= $0.5P + 0.5Q$

- P and Q can be anything:
 - points on a plane (2D) or in space (3D)
 - Colors in RGB or HSV (3D)
 - Whole images (m-by-n D)... etc.

Averaging Images: Cross-Dissolve

Interpolate whole images:

$$Image_{halfway} = (1-t)*Image_1 + t*image_2$$

This is called **cross-dissolve** in film industry

Averaging Images: Cross-Dissolve

Interpolate whole images:

$$Image_{halfwav} = (1-t)*Image_1 + t*image_2$$

This is called **cross-dissolve** in film industry

Averaging Images = Rotating Objects

Image₁

Image₂

t = 1

$$t = 0$$

$$t = 0.5$$

Averaging Images = Rotating Objects

Image₁

 $Image_2$

$$t = 0$$

$$t = 0.3$$

Averaging Images = Rotating Objects

 $Image_2$

mago

(1-t)*Image₁

t = 0

$$t = 0.7$$

$$t = 1$$

t*Image₂

Image_{halfway}

 $\frac{\text{Image}_1}{\text{Hage}_2} + \frac{\text{Image}_2}{\text{Image}_2} = ?$

Image₁ Image₂

Averaging Images != Rotating Complex Objects

Averaging 'Eigen' Images = Rotating Objects

Cat-Baby Averaging

Object Averaging with feature matching!

Nose to nose, eye to eye, mouth to mouth, etc.

This is a non-parametric warp

Cat-Baby Averaging

Object Averaging with feature matching (warping)!

- Nose to nose, eye to eye, mouth to mouth, etc.
- This is a non-parametric warp

Warping, then cross-dissolve

Image warping – non-parametric

Image warping idea 1: dense flow

Displacement vector (u,v) for each pixel.

Great details... but too much work, let's simply it to mesh grid

Image warping idea 2: dense grid

Define and manipulate the mesh grid

Image warping idea 2 : dense grid

Grid deformation generates expression change

Image warping idea 2: dense grid

Still too much work... simplify it to sparse control points and triangles

Image warping idea 3: sparse points

Specify sparse points and their correspondence

Image warping idea 3 : sparse points

- Define a triangular mesh over the feature points
- Triangle-to-triangle correspondences
- Warp each triangle separately from source to destination

From sparse points to dense grid

 Warping on triangulation corresponds to warping on dense grid, and dense pixel flow

Delaunay Triangulation

- Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram.
- The DT may be constructed in O(nlogn) time.
- This is what Matlab's <u>delaunay</u> function uses.

What is good feature points

- The triangulation is consistent with image boundary
 - Texture regions won't fade into the background when morphing
- Maintain the relationship between parts

Triangular Mesh

- 1. Input correspondences at key feature points
- 2. Define a triangular mesh over the points
 - Same mesh in both images!
 - Now we have triangle-to-triangle correspondences

Warp interpolation

- How do we create an intermediate warp at time t?
 - Assume t = [0,1]
 - Simple linear interpolation of each feature pair
 - (1-t)*p1+t*p0 for corresponding features p0 and p1

Morphing = Warping + Cross-dissolve

- For each time t, define the intermediate shape
 - $p_t = (1 t) \times p_1 + t \times p_2$
 - triangulation doesn't change
- Warp both image to the intermediate shape
- Dissolve image = $(1-t)\times image_1 + t\times Image_2$

Morphing Sequence

An Example

Morphing

Step 1: Triangle interpolation

$$\begin{aligned} \mathbf{A}_t &= (1-t)\mathbf{A}_S + t\mathbf{A}_T \\ \mathbf{B}_t &= (1-t)\mathbf{B}_S + t\mathbf{B}_T \\ \mathbf{C}_t &= (1-t)\mathbf{C}_S + t\mathbf{C}_T \end{aligned}$$

t = 1

Step 2: Warping

Step 2: Warping

Triangle warping = Affine transform

Affine transform is a pixel transportation $X \rightarrow X^{I}$ It is controlled by the movement of the three vertices of the triangle

Barycentric Coordinates

Each point **X** has an invariant representation with respect to the three vertices.

Barycentric Coordinates

$$\mathbf{x} = \alpha \mathbf{A}_{S} + \beta \mathbf{B}_{S} + \gamma \mathbf{C}_{S} \qquad \mathbf{x}^{t} = \alpha \mathbf{A}_{t} + \beta \mathbf{B}_{t} + \gamma \mathbf{C}_{t}$$
$$\alpha + \beta + \gamma = 1$$

Barycentric Coordinates $\mathbf{x} = \mathbf{A} + \beta(\mathbf{B} - \mathbf{A}) + \gamma(\mathbf{C} - \mathbf{A})$

$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 linear equations in 3 unknowns

 B_{S}

Barycentric coordinate

$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Warping with Barycentric Coordinate

$$\mathbf{X} = \alpha \mathbf{A}_S + \beta \mathbf{B}_S + \gamma \mathbf{C}_S$$

$$\mathbf{X}^t = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$$

Warping with Barycentric Coordinate

$$\begin{bmatrix} \mathbf{A}_{x} & \mathbf{B}_{x} & \mathbf{C}_{x} \\ \mathbf{A}_{y} & \mathbf{B}_{y} & \mathbf{C}_{y} \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \lambda \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 $\mathbf{x}_t = \alpha \mathbf{A} + \beta \mathbf{B} + \gamma \mathbf{C}$

Warping with Barycentric Coordinate

Grids before and after warping

Step 3: Average warped image

Warping and Cross Dissolve

Inverse warping from the source image

Inverse warping from target image

Step 3: averaging warped image

Warping, then cross-dissolve

