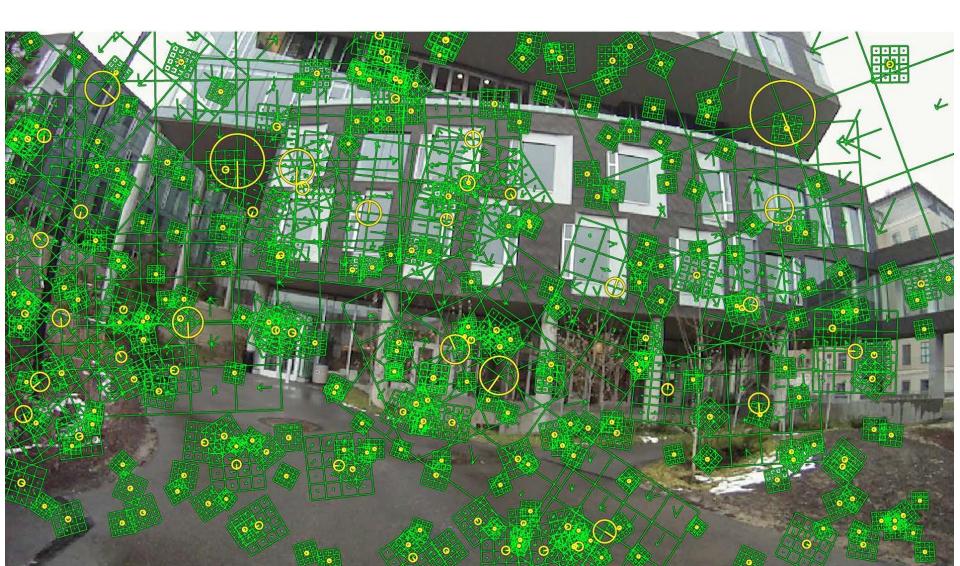


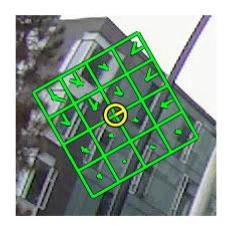
Miriam Blaylock@flickr

Feature Detection SIFT (Scale Invariant Feature Transform)

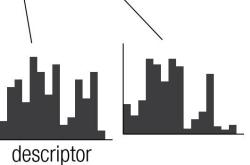
Feature Detection SIFT (Scale Invariant Feature Transform)

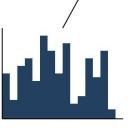


Feature Detection SIFT (Scale Invariant Feature Transform)

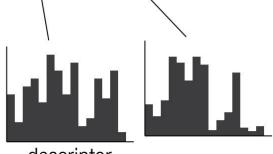


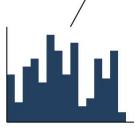
Feature Matching Feature Descriptor





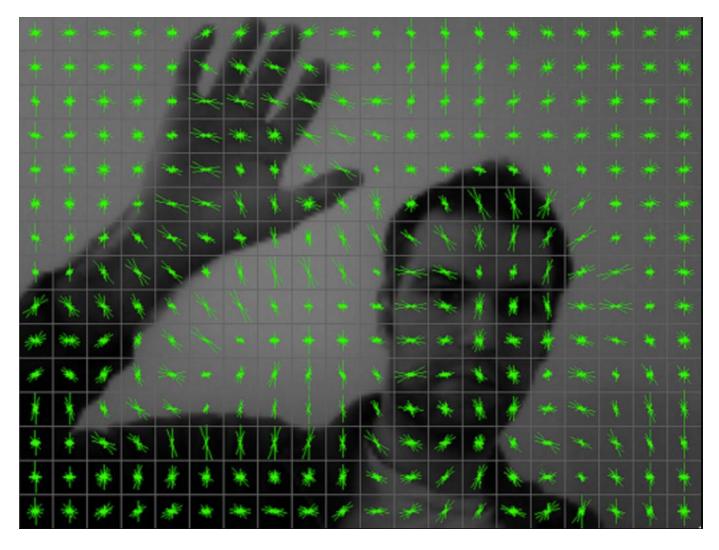
Feature Matching Nearest Neighbor Search





descriptor

Hog

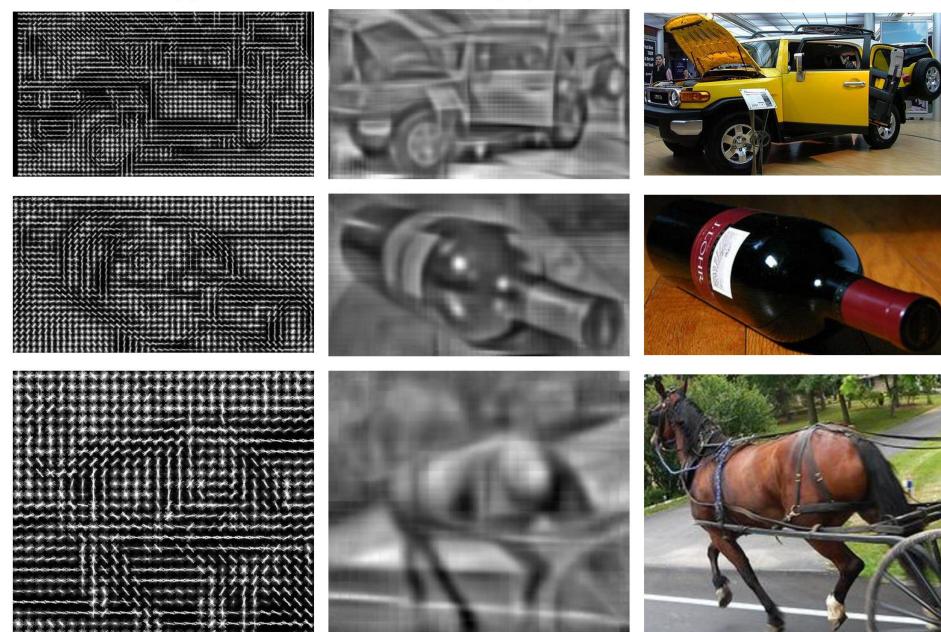


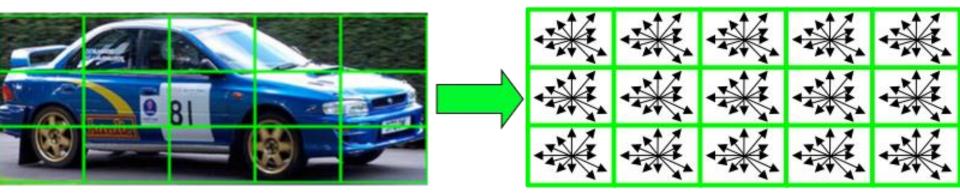
Greg Borenstein@flickr

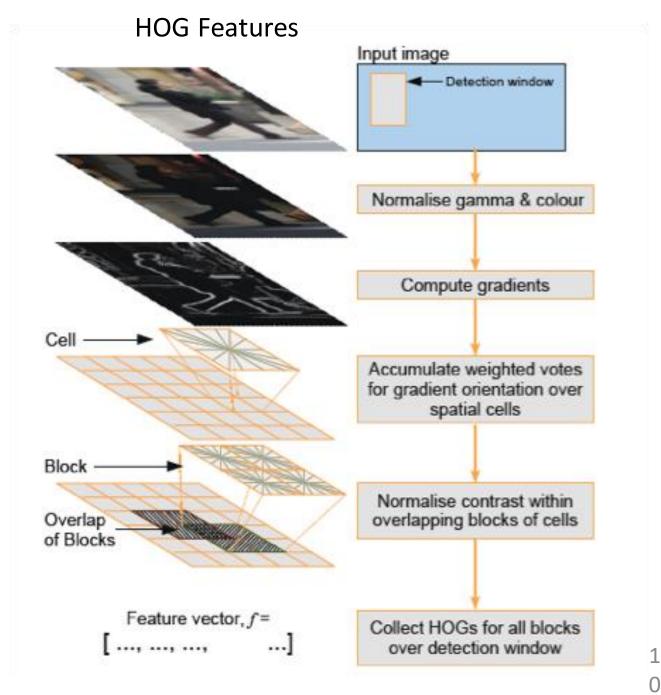
HOG [1]

Inverse (Us)

Original







Create cell histograms

- Each pixel in cell casts weighted vote based on gradient magnitude centered there
 - Weighted by applying a Gaussian spatial window to each pixel before accumulating orientation votes into cells → (σ = . 5*block width)
- Votes are accumulated in 9 Histogram channels (orientation bins) spread evenly over 0-180 degrees (Or 0-360 degrees if signed values desired)

"Human Detection PHD Thesis" Navneet Dalal 2006

(a) R-HOG/SIFT

Block

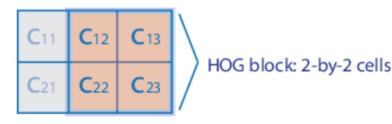
- Descriptor Blocks
 - To account for illumination/ contrast changes the cells must be grouped into "blocks" and normalized
 - HOG descriptor is a vector of components of normalized cell histograms from all the block regions
 - Author's optimum R-HOG (10% miss rate)
 - 3 parameters
 - 3x3 cell blocks
 - 6x6 pixel cells
 - 9 histogram channels (orientation bins)

Arrangement of Histograms in HOG Feature Vectors

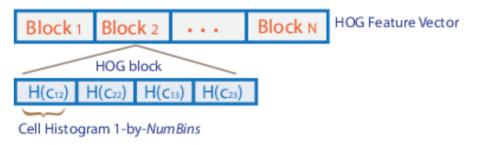
The figure below shows an image with six cells.

C 11	C 12	C 13
C ₂₁	C 22	C 23

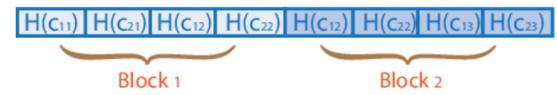
If you set the BlockSize to [2 2], it would make the size of each HOG block, 2-by-2 cells. The size of the cells are in pixels.



The HOG feature vector is arranged by HOG blocks. The cell histogram, H(C_{yx}), is 1-by-NumBins.

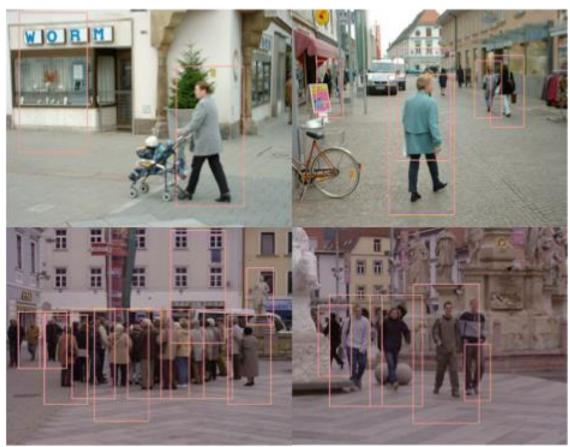


The figure below shows the HOG feature vector with a 1-by-1 cell overlap between blocks.

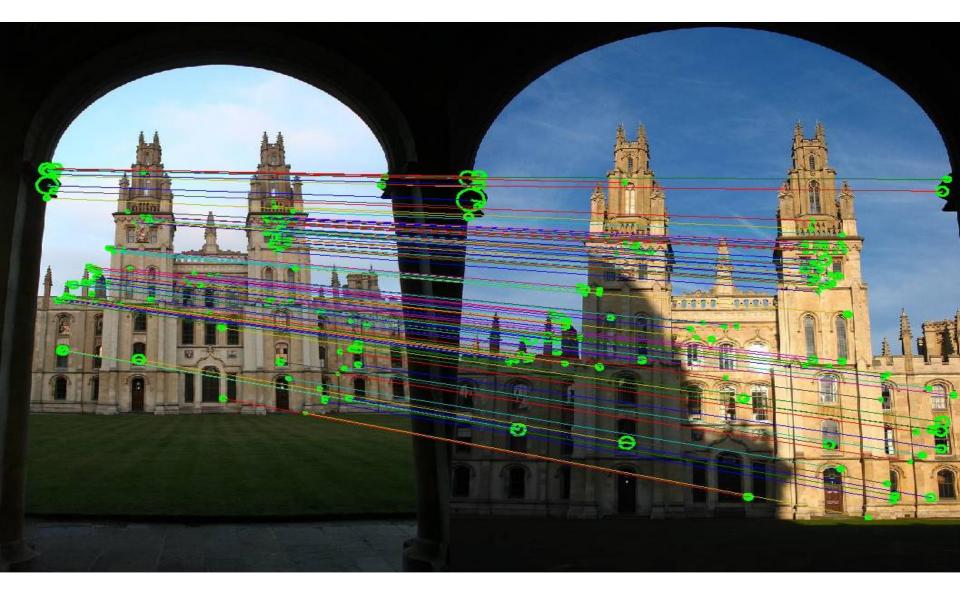


Normalize the Blocks

- V is vector containing nonnormalized histogram data and e is a small constant (Not very important over the larger ranges – 1e^A-3 to 5e^A-2)
- Typical Detector Window
 - Authors used 64x128 detection window
 - 16 pixels of margin around person on all four sides
 - Decreasing window size or person size in image decreases performance

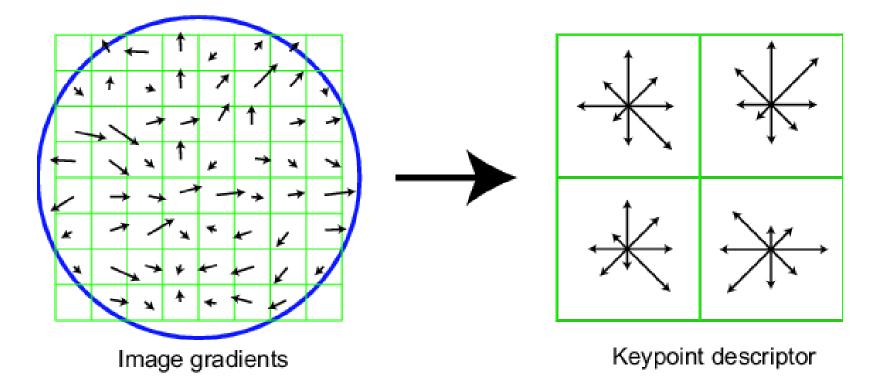


SIFT



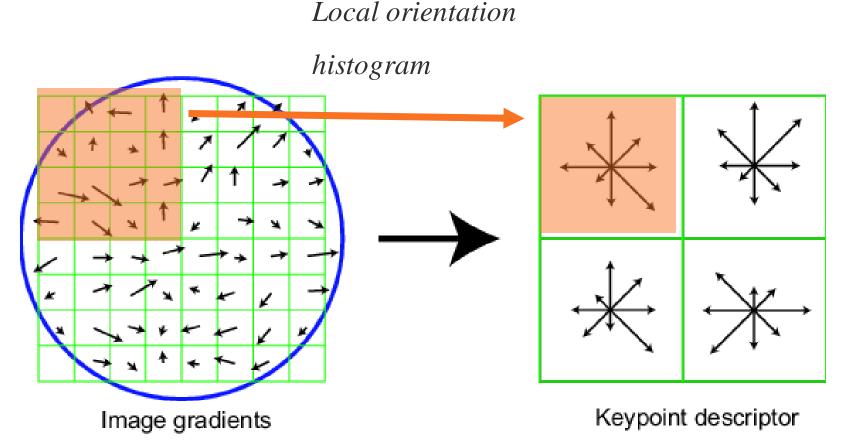
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions



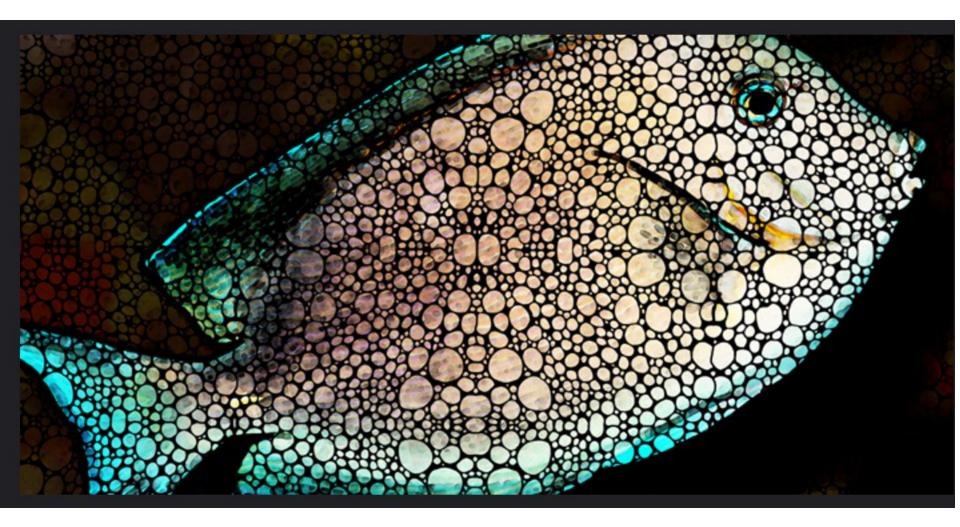
SIFT vector formation

• Orientation is defined relative to the orientation of the detected Sift feature



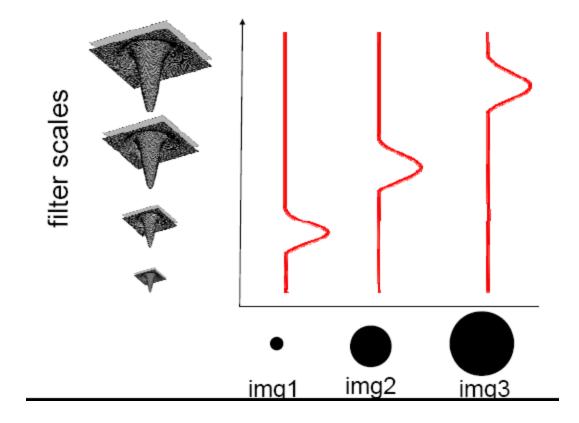
1

SIFT Fish



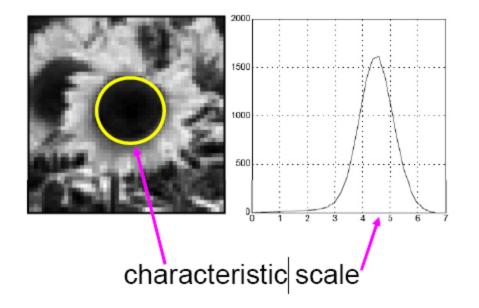
Sharon Cummings @ flickr

Laplacian-of-Gaussian = "**blob**" detector



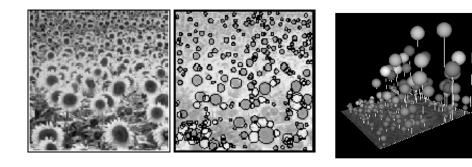
At a given point in the image:

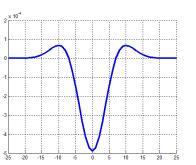
• We define the *characteristic scale* as the scale that produces peak of Laplacian response

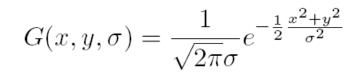


Lowe's Scale-space Interest Points

- · Laplacian of Gaussian kernel
- Scale-space detection
 - Find local maxima across scale/space
 - A good "blob" detector

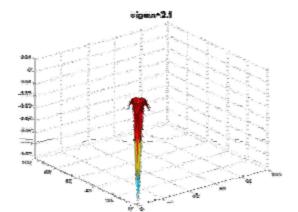


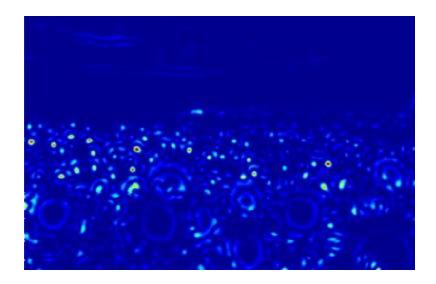


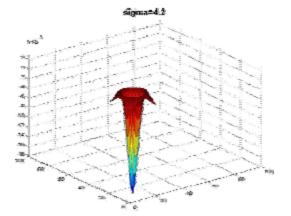


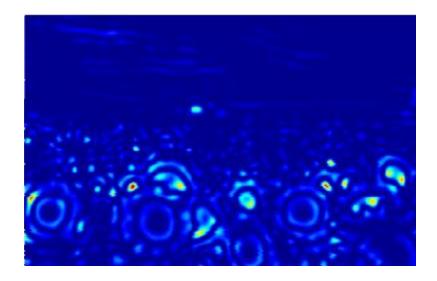
$$\nabla^2 G(x,y,\sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

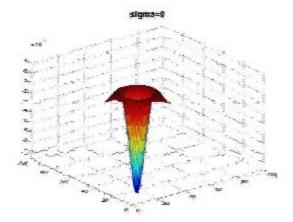
T. Lindeberg IJCV 1998]

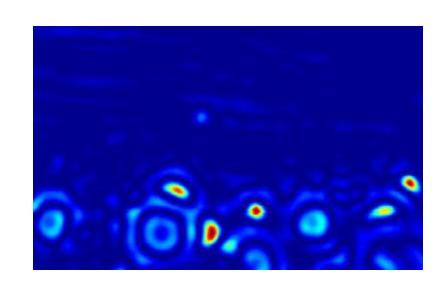


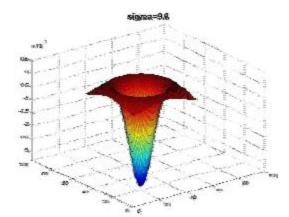


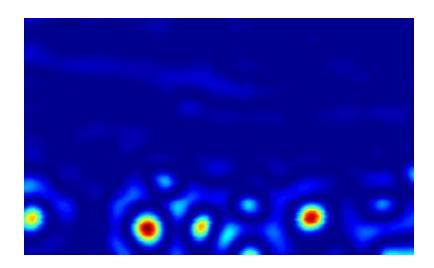


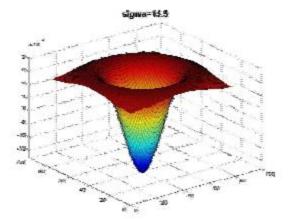


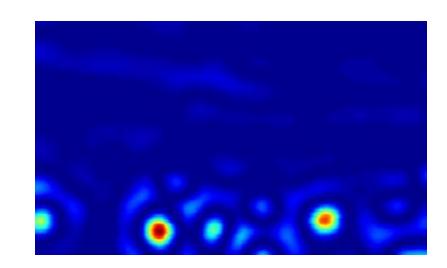


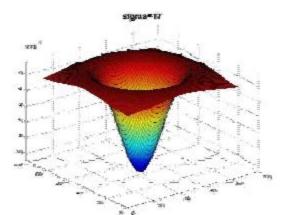




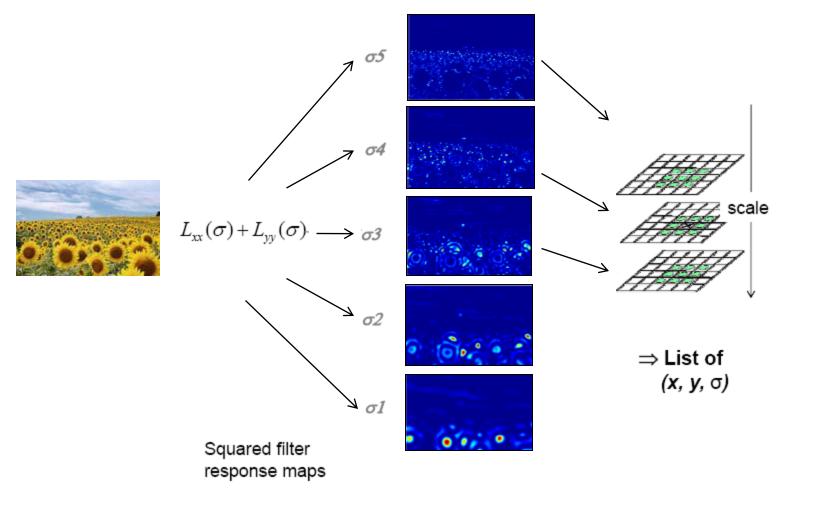








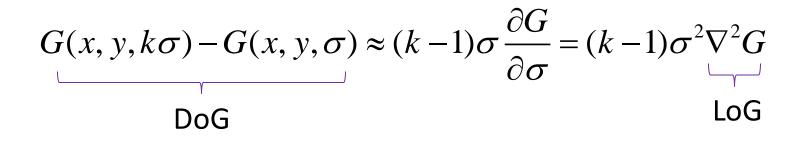
Scale-space blob detection



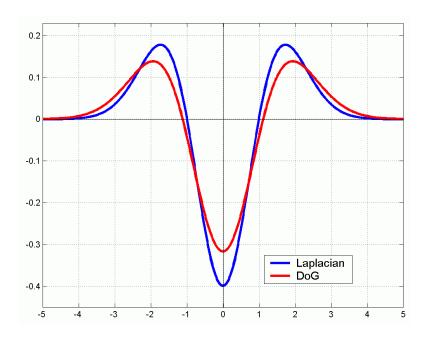
Scale-space blob detector: Example

LoG V.S. DoG

$$\nabla^2 G_{\sigma}(x, y) = \left(\frac{x^2 + y^2}{\sigma^4} - \frac{2}{\sigma^2}\right) G_{\sigma}(x, y)$$



Lowe's Scale-space Interest Points: Difference of Gaussians



 Gaussian is an ad hoc solution of heat diffusion equation

$$\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G.$$

• Hence

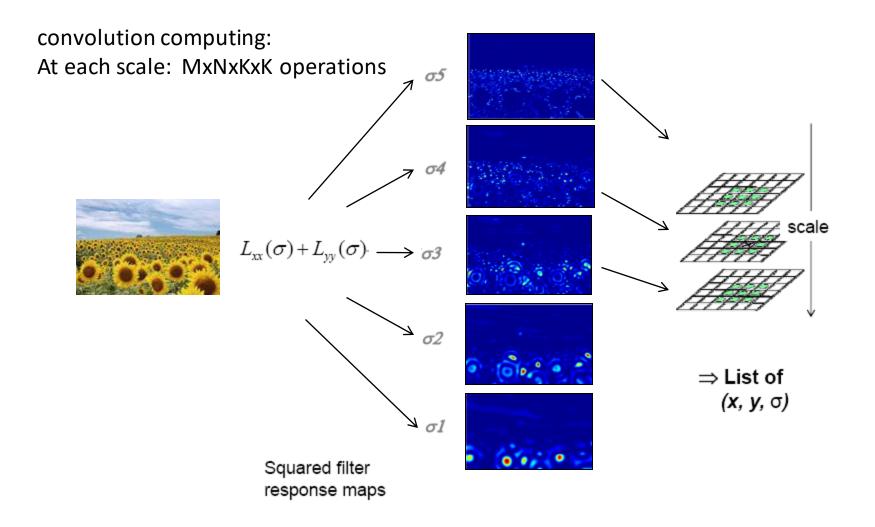
 $G(x, y, k\sigma) - G(x, y, \sigma) \approx (k-1)\sigma^2 \nabla^2 G.$

 k is not necessarily very small in practice

Technical detail

• We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

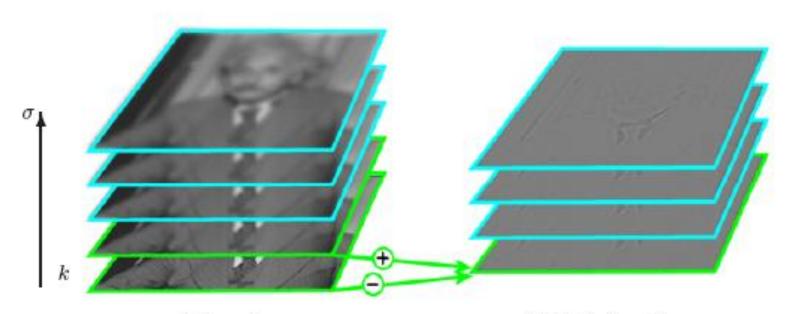
How many scales?



DoG Image Pyramid

 $\sigma_0, k\sigma_0, k^2\sigma_0, k^3\sigma_0, k^4\sigma_0, k^5\sigma_0, k^6\sigma_0, \dots$ $\sigma_0 \rightarrow 2\sigma_0$ image MxN, filter 2Kx2K image M/2xN/2, filter, KxK

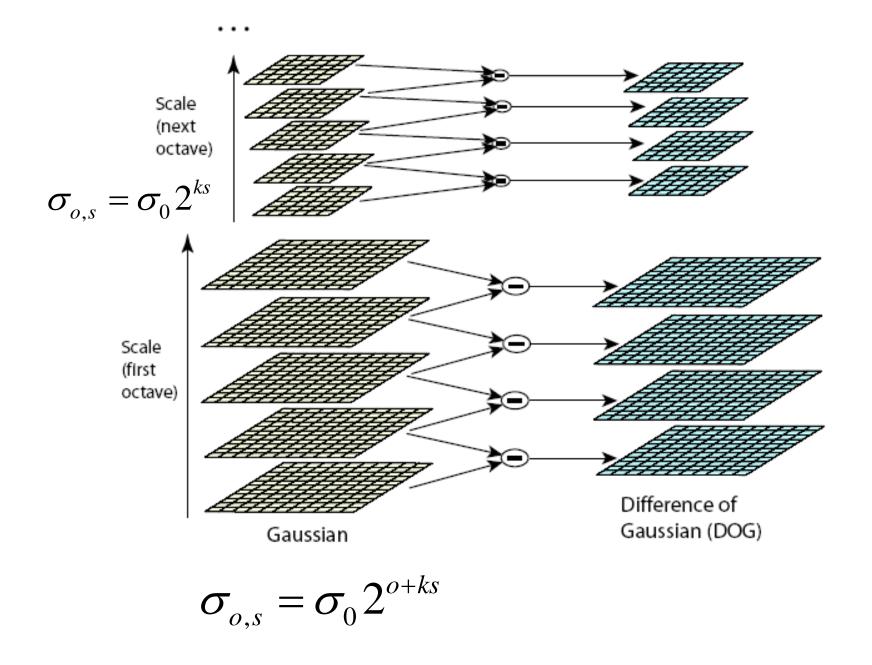
DoG Image Pyramid



Octave 1

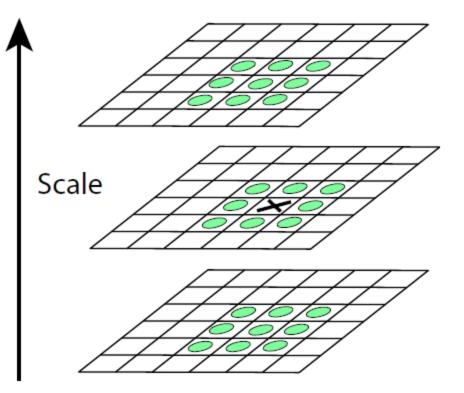
DoG Octave 1

 $\sigma_0 \rightarrow 2\sigma_0$



Local Extrema Detection

- Maxima and minima
- Compare x with its 26 neighbors at 3 scales



Frequency of sampling in scale

- s: intervals in each octave of scale space ($\sigma_0 \rightarrow 2\sigma_0$) $- k=2^{1/s}$ $\sigma_{o,s} = \sigma_0 2^o k^s$
- In order to cover a complete octave for extrema detection
 - S = s+3 Gaussian images are produced for each octave
 s: {-1,S+1}
 - s+2 DoG images
 - s scales for extrema detection

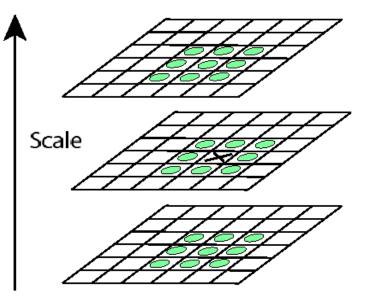
SIFT Key point localization

- Detect maxima and minima of difference-of-Gaussian in scale space
- Fit a quadratic to surrounding values for subpixel and sub-scale interpolation (Brown & Lowe, 2002)
- Taylor expansion around point:

• Offset of extremum (use finite differences for derivatives):

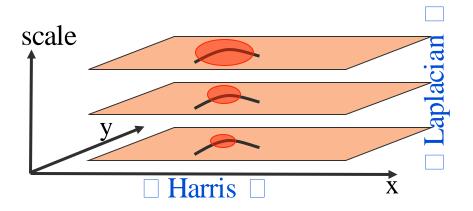
$$D(\mathbf{x}) = D + \frac{\partial D}{\partial \mathbf{x}}^T \mathbf{x} + \frac{1}{2} \mathbf{x}^T \frac{\partial^2 D}{\partial \mathbf{x}^2} \mathbf{x}$$

$$\mathbf{\hat{x}} = -\frac{\partial^2 D}{\partial \mathbf{x}^2}^{-1} \frac{\partial D}{\partial \mathbf{x}}$$



Scale Invariant Detectors

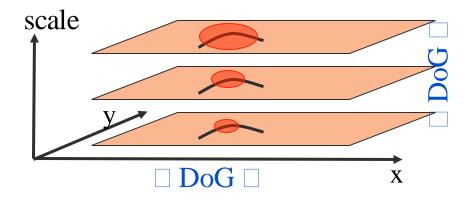
- Harris-Laplacian¹ Find local maximum of:
 - Harris corner detector in space (image coordinates)
 - Laplacian in scale



• SIFT (Lowe)²

Find local maximum of:

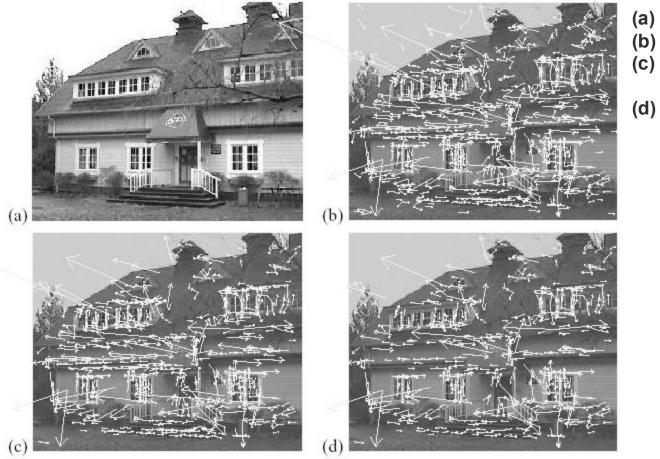
Difference of Gaussians in space and scale



¹K.Mikolajczyk, C.Schmid. "Indexing Based on Scale Invariant Interest Points". ICCV 2001 ²D.Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Accepted to IJCV 2004

Example of keypoint detection

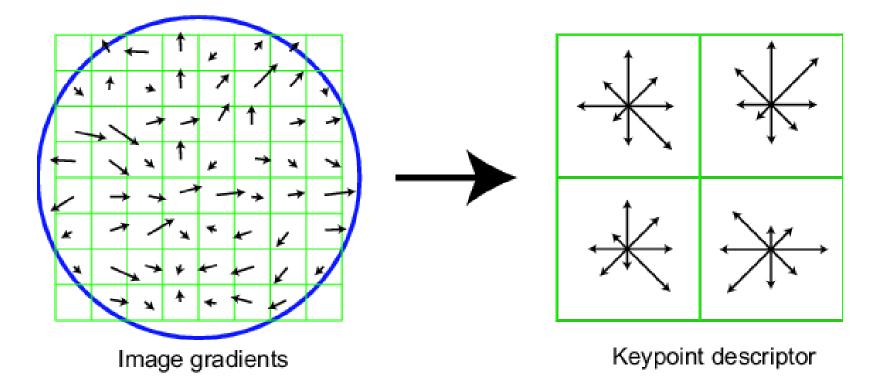
Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)



- (a) 233x189 image
- (b) 832 DOG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures

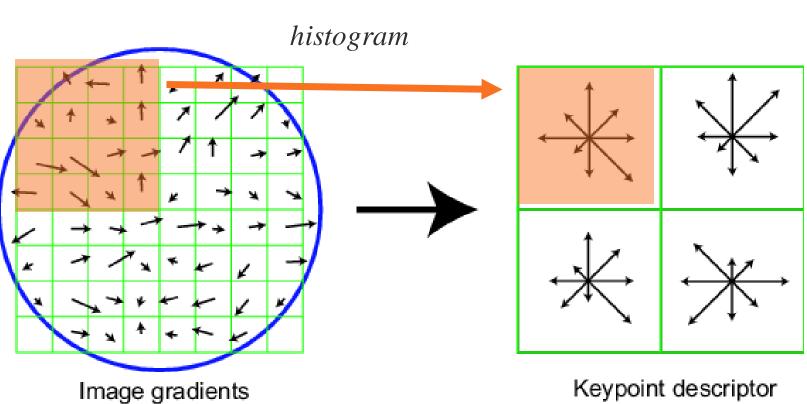
SIFT vector formation

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions



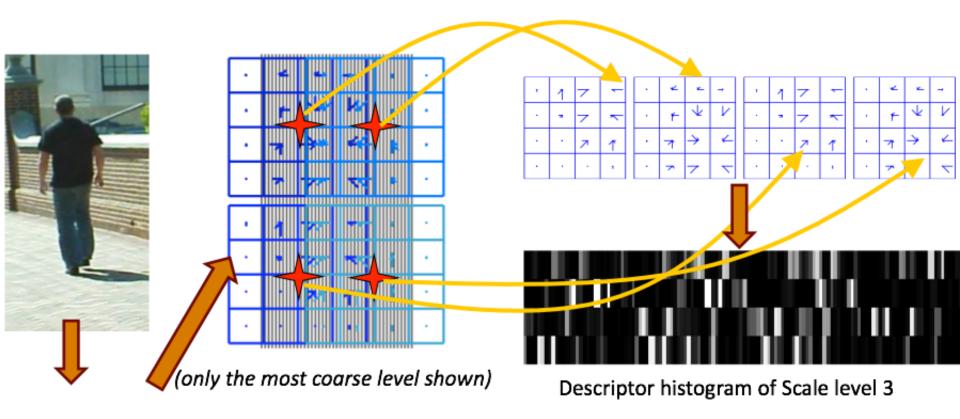
SIFT vector formation

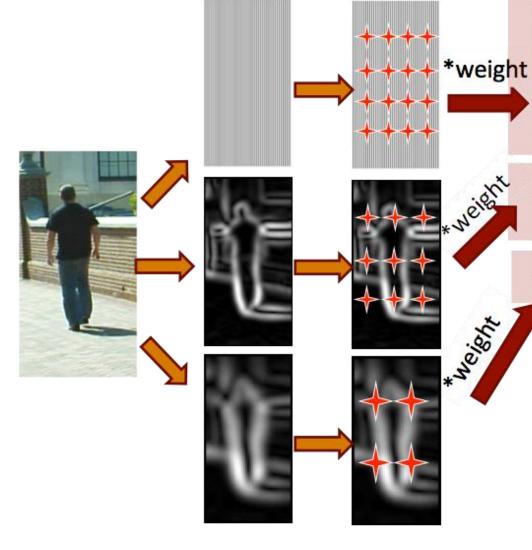
• Orientation is defined relative to the orientation of the detected Sift feature

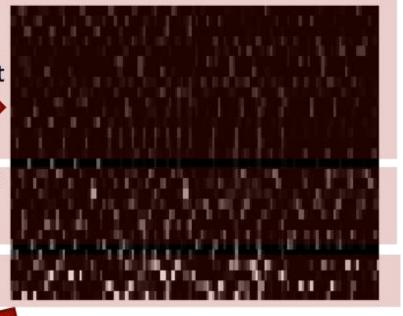


Local orientation

Feature Extraction for Image Classifier



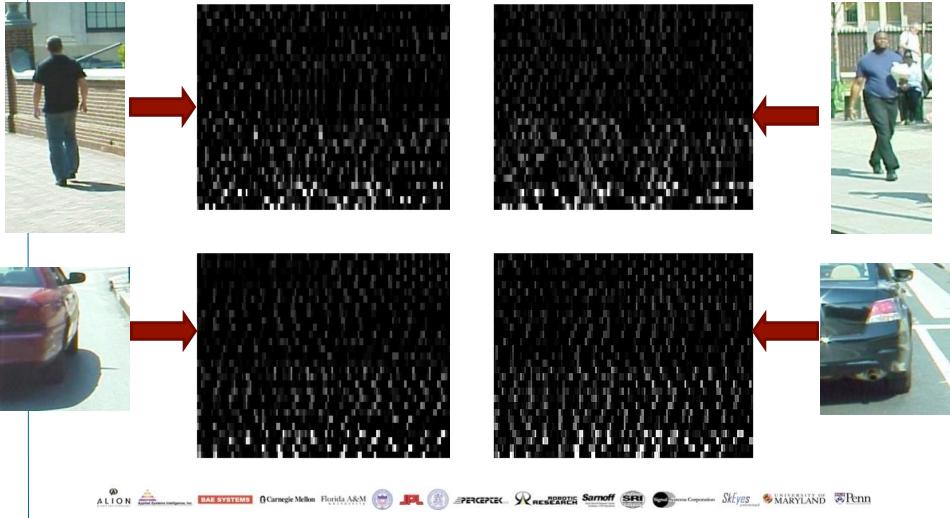




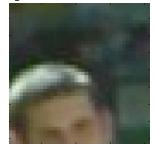
Entire Descriptor histogram

Weight each descriptor
 exponential to scale level
 The final descriptor
 representation has 128x29
 bins

Examples fragturen Extraction for Image Classifieset

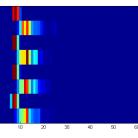


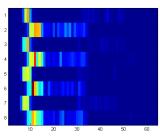
Features Sample



1. Color Histogram

2.HOG feature





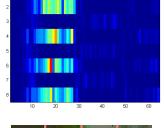
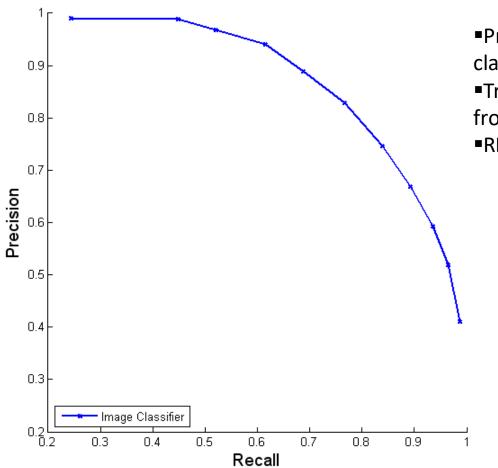


Image Classifier Result



- Precision-Recall curve of our Image classifier
- Trained/Tested on image set generated from stereo detection
- RBF kernel SVM used

Typical Missed Detections

Occlusions

Incomplete stereo detection

Lack of training data

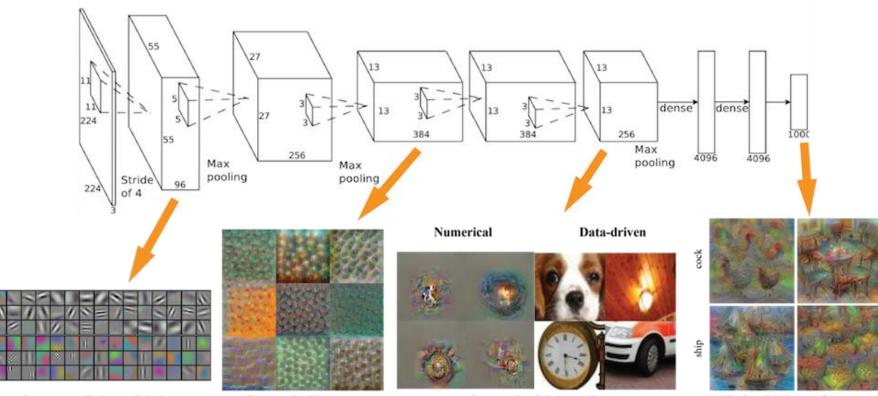
ALION .

BAE SYSTEMS

G Carnegie Mellon Florida A&M

Typical False Positives •Human-like Shapes & Clutters

121



Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

Fc8: Object Classes

dinning table

grocery store