
Idea #3: Local warp, then cross-dissolve

Morphing procedure:

for every t,

1. Find the average shape (the “mean dog”)
• local warping

2. Find the average color
• Cross-dissolve the warped images

Image Morphing, select features

1) Generating correspondence points (by hand)

1) In matlab, use “cpselect” function, or write your

own with “ginput” + “plot” (with “hold on”, “hold

off”)

Image Morphing, generating intermediate shape (t-average)

2) Compute a weighted average shape

• Assume t = [0,1]

• Simple linear interpolation of each feature pair

• (1-t)*p1+t*p0 for corresponding features p0 and p1

t=0.4

Image Morphing, generating intermediate shape

2) Compute a weighted average shape

• Assume t = [0,1]

• Simple linear interpolation of each feature pair

• (1-t)*p1+t*p0 for corresponding features p0 and p1

t=0.7

Image Morphing

• Corresponding points:

• A1 – A2, B1 – B2, C1 – C2, D1 – D2

• Step1: Create an intermediate shape (by

interpolation)

• Step2: Warp both images towards the shape

• Step3: Cross-dissolve the color

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

Image Morphing: Intermediate Shape

It
At

Bt

Ct
Dt

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

Image Morphing: Warping

I1’ At Bt

Ct
Dt

I2’ At Bt

Ct
Dt

Warp

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

• Cross-dissolve the colors

by

inverse triangle warping

• At: Cyan = Green + Blue

• Bt: Purple = Red + Blue

• Ct: Blue = Green + Yellow

• Dt: Orange = Red + Yellow

Image Morphing: Cross Dissolve Colors

I1’ At Bt

Ct
Dt

I2’ At Bt

Ct
Dt

Ifinal
At Bt

Ct
Dt

T-1

T-1

Interpolation using Triangles

Region of interest enclosed by triangles.

Moving nodes changes each triangle

Just need to map regions between two triangles

),(:pointsControl ii yx
)','(:pointsWarped ii yx

Barycentric Co-ordinates

cbax gba ++=

a b

c

x

''' cbax gba ++='

'a

'b

'c

'x

1=++ gba

10and10

iftriangletheinsideis

 âá

xHow do we know if a point

is inside of a triangle?

Barycentric Co-ordinates

a b

c

x

)(ab-b

)(ac-g
cba

cba

acabax

gba

gbgb

gb

++=

++--=

-+-+=

)1(

)()(

cbax gba ++=

1=++ gba

Three linear equations in 3 unknowns

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

g

b

a

1111

yyy

xxx

cba

cba

y

x

Interpolation using Triangles

• To find out where each pixel in new image comes

from in old image

• Determine which triangle it is in

• Compute its barycentric co-ordinates

• Find equivalent point in equivalent triangle in original

image

• Only well defined in region of `convex hull’ of

control points

Thin-plate spline TPS

Sparse and irregular positioned feature points, and smooth interpolation

Let’s consider two sets of points for which we assume the correspondences
to be known (a). The TPS warping allows a perfect alignment of the points and the
bending of the grid shows the deformation needed to bring the two sets on top of each
other (b). Note that in the case of TPS applied to coordinate transformation we actually
use two splines, one for the displacement in the x direction and one for the displacement
in the y direction. The displacement in each direction is considered as a height map
for the points and a spline is fit as in the case of scattered points in 3D space. And finally
the two resulting transformations are combined into a single mapping.

Simple example of coordinate transformation using TPS

Whitbeck & Guo

Whitbeck & Guo

Whitbeck & Guo

TPS model:

First the equation:

how do we estimate the TPS parameters?

Say the blue circles are the source image features, and red crosses are the target

image features, how do we “back-warp” all the image features in the target

image back to the source image?

We could compute a TPS model that maps “red” to “blue”, and apply it to the

rest of the target image pixels.

how do we estimate the TPS parameters?

We would need two functions:
1) tps_model = est_tps(source_pts, target_pts);

2) morphed_im = morph(im_source, tps_model);

tps_model = (a1, ax, ay, w1, …, wp)

TPS model, special case 1, translation only

TPS model, case 2: Affine parameters only

TPS model: Full general case:

U(r) = - r^2 log(r^2)

r = [0, 1] Max at r = 1/sqrt(e) = 0.607

U(r) = - r^2 log(r^2)

r = [0, 2]

TPS model:

