
Image Morphing,

Triangulation

Diet-Wiegman

Lecture notes borrowed from A. Efros, T. Cootes

Image morphing:

Morphing = Object Averaging

The aim is to find “an average” between two objects
• Not an average of two images of objects…

• …but an image of the average object!

• How can we make a smooth transition in time?

– Do a “weighted average” over time t

How do we know what the average object looks like?
• We haven’t a clue!

• But we can often fake something reasonable

– Usually required user/artist input

P

Q

v = Q - P

P + 0.5v

= P + 0.5(Q – P)

= 0.5P + 0.5 Q

P + 1.5v

= P + 1.5(Q – P)

= -0.5P + 1.5 Q

(extrapolation)Linear Interpolation

(Affine Combination):

New point aP + bQ,

defined only when a+b = 1

So aP+bQ = aP+(1-a)Q

Averaging Points

P and Q can be anything:

• points on a plane (2D) or in space (3D)

• Colors in RGB or HSV (3D)

• Whole images (m-by-n D)… etc.

What’s the average

of P and Q?

Idea #1: Cross-Dissolve

Interpolate whole images:

Imagehalfway = (1-t)*Image1 + t*image2

This is called cross-dissolve in film industry

But what is the images are not aligned?

Idea #2: Align, then cross-disolve

Align first, then cross-dissolve

• Alignment using global warp – picture still valid

Dog Averaging

What to do?

• Cross-dissolve doesn’t work

• Global alignment doesn’t work

– Cannot be done with a global transformation (e.g. affine)

• Any ideas?

Feature matching!

• Nose to nose, tail to tail, etc.

• This is a local (non-parametric) warp

Idea #3: Local warp, then cross-dissolve

Morphing procedure:

for every t,

1. Find the average shape (the “mean dog”)
• local warping

2. Find the average color
• Cross-dissolve the warped images

Local (non-parametric) Image Warping

Need to specify a more detailed warp function

• Global warps were functions of a few (2,4,8) parameters

• Non-parametric warps u(x,y) and v(x,y) can be defined

independently for every single location x,y!

• Once we know vector field u,v we can easily warp each pixel

(use backward warping with interpolation)

Image Warping – non-parametric

Move control points to specify a spline warp

Spline produces a smooth vector field

Warp specification - dense

How can we specify the warp?

Specify corresponding spline control points

• interpolate to a complete warping function

But we want to specify only a few points, not a grid

Warp specification - sparse

How can we specify the warp?

Specify corresponding points

• interpolate to a complete warping function

• How do we do it?

How do we go from feature points to pixels?

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to

destination

• How do we warp a triangle?

• 3 points = affine warp!

• Just like texture mapping

Triangulations

A triangulation of set of points in the plane is a partition

of the convex hull to triangles whose vertices are the

points, and do not contain other points.

There are an exponential number of triangulations of a

point set.

An O(n3) Triangulation Algorithm

Repeat until impossible:

• Select two sites.

• If the edge connecting them does not intersect previous

edges, keep it.

“Quality” Triangulations

Let (T) = (1, 2 ,.., 3t) be the vector of angles in the
triangulation T in increasing order.

A triangulation T1 will be “better” than T2 if (T1) > (T2)
lexicographically.

The Delaunay triangulation is the “best”
• Maximizes smallest angles

good bad

Boris Nikolaevich Delaunay (March 15, 1890 – July 17, 1980)

Delaunay
bad

http://higeom.math.msu.su/history/delone_r.html

Improving a Triangulation

In any convex quadrangle, an edge flip is possible. If

this flip improves the triangulation locally, it also

improves the global triangulation.

If an edge flip improves the triangulation, the first edge

is called illegal.

Illegal Edges

Lemma: An edge pq is illegal iff one of its opposite vertices is inside the
circle defined by the other three vertices.

Proof: By Thales’ theorem.

Theorem:A Delaunay triangulation does not contain illegal edges.

Corollary: A triangle is Delaunay iff the circle through its vertices is

empty of other sites.

Corollary: The Delaunay triangulation is not unique if more than

three sites are co-circular.

p

q

Naïve Delaunay Algorithm

Start with an arbitrary triangulation. Flip any illegal edge until no

more exist.

Could take a long time to terminate.

Delaunay Triangulation by Duality

General position assumption: There are
no four co-circular points.

Draw the dual to the Voronoi diagram
by connecting each two neighboring
sites in the Voronoi diagram.

Corollary: The DT may be constructed
in O(nlogn) time.

This is what Matlab’s delaunay
function uses.

A circle circumscribing any Delaunay triangle does not contain

any other input points in its interior.

If a circle passing through two of the input points doesn't contain any

other of them in its interior, then the segment connecting the two points

is an edge of a Delaunay triangulation of the given points.

Gabriel Graph is a subset of Delaunay triangle

Points a and b are

Gabriel

neighbours, as c is

outside their

diameter circle.

The closest neighbor b to any point p is on an edge bp in the

Delaunay triangulation since the nearest neighbor graph is a

subgraph of the Delaunay triangulation.

The Delaunay triangulation is a geometric spanner: the shortest path

between two vertices, along Delaunay edges, is known to be no longer

than \frac{4\pi}{3\sqrt{3}} \approx 2.418 times the Euclidean

distance between them.

Image Morphing

We know how to warp one image into the other, but

how do we create a morphing sequence?

1. Create an intermediate shape (by interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped images

Image Morphing

Corresponding points:

• A1 – A2, B1 – B2, C1 – C2, D1 – D2

Step1: Create an intermediate shape (by interpolation)

Step2: Warp both images towards the shape

Step3: Cross-dissolve the color

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

Image Morphing: Intermediate Shape

It
At

Bt

Ct
Dt

𝐴𝑡 = 𝑡𝐴1+ 1 − 𝑡 𝐴2
𝐵𝑡 = 𝑡𝐵1 + 1 − 𝑡 𝐵2
𝐶𝑡 = 𝑡𝐶1 + 1 − 𝑡 𝐶2
𝐷𝑡 = 𝑡𝐷1+ 1 − 𝑡 𝐷2

0 ≤ 𝑡 ≤ 1

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

Image Morphing: Warping

I1’ At Bt

Ct
Dt

I2’ At Bt

Ct
Dt

Warp

I1 I2
A1

B1

C1

D1

A2
B2

C2

D2

Cross-dissolve the colors by

inverse triangle warping

• At: Cyan = Green + Blue

• Bt: Purple = Red + Blue

• Ct: Blue = Green + Yellow

• Dt: Orange = Red + Yellow

Image Morphing: Cross Dissolve Colors

I1’ At Bt

Ct
Dt

I2’ At Bt

Ct
Dt

Ifinal
At Bt

Ct
Dt

T-1

T-1

Warp interpolation

How do we create an intermediate warp at time t?

• Assume t = [0,1]

• Simple linear interpolation of each feature pair

• (1-t)*p1+t*p0 for corresponding features p0 and p1

Triangular Mesh

1. Input correspondences at key feature points

2. Define a triangular mesh over the points

• Same mesh in both images!

• Now we have triangle-to-triangle correspondences

3. Warp each triangle separately from source to

destination

• How do we warp a triangle?

• 3 points = affine warp!

• Just like texture mapping

Warping texture

Problem:

• Given corresponding points in two images, how do we

warp one into the other?

Two common solutions

1. Piece-wise linear using triangle mesh

2. Thin-plate spline interpolation

Interpolation using Triangles

Region of interest enclosed by triangles.

Moving nodes changes each triangle

Just need to map regions between two triangles

),(:pointsControl ii yx
)','(:pointsWarped ii yx

Barycentric Co-ordinates

cbax gba ++=

a b

c

x

''' cbax gba ++='

'a

'b

'c

'x

1=++ gba

10and10

iftriangletheinsideis

 âá

xHow do we know if a point

is inside of a triangle?

Barycentric Co-ordinates

a b

c

x

)(ab-b

)(ac-g
cba

cba

acabax

gba

gbgb

gb

++=

++--=

-+-+=

)1(

)()(

cbax gba ++=

1=++ gba

Three linear equations in 3 unknowns

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

g

b

a

1111

yyy

xxx

cba

cba

y

x

Interpolation using Triangles

To find out where each pixel in new image comes from

in old image

• Determine which triangle it is in

• Compute its barycentric co-ordinates

• Find equivalent point in equivalent triangle in original

image

Only well defined in region of `convex hull’ of control

points

Other Issues

Beware of folding

• You are probably trying to do something 3D-ish

Morphing can be generalized into 3D

• If you have 3D data, that is!

Extrapolation can sometimes produce interesting effects

• Caricatures

Dynamic Scene

