Image Warping

http://maps.a9.com



http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html




Autostiching on A9.com images,

Spruce street, Philadelphia




W1 TUNG

om

o













j |-
\ [\
MNEN




Image Warping

Slides from 15-463: Computational Photography
Alexei Efros, CMU, Fall 2005

Some slides from Steve Seitz



Image Warping

image filtering: change range of image

g(x) = T(f(x))

——»

I~

f\w
X

image warping: change domain of image

g(x) =1(T(x))

T

TN

f\w
X

X

X



Image Warping

image filtering: change range of image

g(x) = T(f(x))

image warping: change domain of image

g(x) =1(T(x))

—»T—»




Parametric (global) warping

Examples of parametric warps:

ti C g
affine PEISPEETVE cylindrical



Parametric (global) warping

e —eeena

p=(x.y)
Transformation T is a coordinate-changing machine:

p’ = T(p)
What does it mean that T is global?

» |s the same for any point p
« can be described by just a few numbers (parameters)

Let’ s represent T as a matrix:
p’ =Mp

X
-M




Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

PN

X 2




Scaling

Non-uniform scaling: different scalars per component:




Scaling

Scaling operation: X'=ax

y'=by

Or, in matrix form:

00
y'[ 10 by
i i
scaling matrix S

What’ s inverse of S?




2-D Rotation

o (X’ ) y’ )
(X, y)

X =x cos(0) - y sin(0)
0 y =x sin(0) +y cos(0)




2-D Rotation

X =1 oS ()
y =1 sin (¢)

X =r1cos (¢p+
y y y =rsin (¢ +0)
o (X', Y ) Q}
’ Trig Identity...
(X y) X" =1 cos(d) cos(0) — r sin(¢) sin(0)
? y =1 sin(¢) sin(0) + r cos(¢) cos(0)
bstitute...
(I) X =x cos(0) - y sin(0)

y = xsin(0) + y cos(0)



2-D Rotation

This is easy to capture in matrix form:

X' 'cos(H) —sin(H)' X ]
' _sin(H) COS(HZ_ y

\

Y

R

Even though sin(8) and cos(0) are nonlinear functions of 6,
« X' is a linear combination of x and y
- y’ is a linear combination of x and y

What is the inverse transformation?
* Rotation by —6 1 .
» For rotation matrices, det(R) = 1 so R =R



2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D ldentity?
x'=x X' _ 1 Olfx
y'=y yio10 1|y
2D Scale around (0,0)?
X'=s,*x ‘x'7 s, O07[x

y'=sy>ky -y!- -O Sy__)’_




2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?

X'=cos®@*x-sin®*y
Y'=sin®*x+cos®@*y

cos® —-sin®

sn® cos®

X
}

2D Shear?
X'=x+sh_*y 'x'T [ 1 sh |[x]
y'=sh *x+y ' sh 1 ||y




2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
X'=—-x X' _ -1 O1[x
y'=y ) 0 11|y
2D Mirror over (0,0)?

X'=-x x' _ -1 01[x
y'=-y V' 0 -1||y



2x2 Matrices

What types of transformations can be
represented with a 2x2 matrix?

2D Translation?
X'=x+1,

y'=y+ty

NO!

Only linear 2D transformations
can be represented with a 2x2 matrix




All 2D Linear Transformations

Linear transformations are combinations of ...

Scale, x' a bl[x
Rotation, =
Shear, and y' C d y

Mirror

Properties of linear transformations:
Origin maps to origin
Lines map to lines
Parallel lines remain parallel
Ratios are preserved
Closed under composition

-1 2l 4



Linear Transformations as Change of Basis

j=(0,1) vV =(VyVy)

u. v_1147
p = = P
u. v._ |3 u. v

Any linear transformation is a basis!!!
What’ s the inverse transform?
How can we change from any basis to any basis?
What if the basis are orthogonal?



Homogeneous Coordinates

Q: How can we represent translation as a 3x3
matrix?

'_
X'=X+I,

y'=y+t,



Homogeneous Coordinates

Homogeneous coordinates

* represent coordinates in 2
dimensions with a 3-vector

homogeneous coords

>




Homogeneous Coordinates

Q: How can we represent translation as a 3x3
matrix?
X'=Xx+1,

y'=y+t,

A: Using the rightmost column:

1 0 ¢ |
Translation = |0 1 z,
0O 0 1




Translation

Example of translation
Homogeneous Coordinates

¥ ##

- 1

=~

x+t

X
V' = y+i,
1 1|1 1

oS = O
~
<
Il

I O o >_‘I

D
D



Homogeneous Coordinates

Add a 3rd coordinate to every 2D point
* (X, Y, w) represents a point at location (x/w, y/w)
* (X,V, 0) represents a point at infinity
* (0, 0, 0) is not allowed

Convenient
coordinate system to
represent many
useful
transformations

JA
ol

1__

(2,1,1) or (4,2,2) or (6,3,3)

'1

2

p'¢



Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

x'T 1

I
[E—
L

I
[E—
1

»'=10
0

0 ¢ ][x]

X

¢,

0 1

Translate

[cos®

=|sin®

0

—sin®
cos®
0

Rotate

O1[x]

0

1

s. 0 0
0 s ’ 0
0O 0 1
Scale
1 sh. O
shy I O
0 0 1
Shear




Affine Transformations

Affine transformations are combinations of ...

Linear transformations, and

Translations

Properties of affine transformations:

Origin does not necessarily map to origin
Lines map to lines

Parallel lines remain parallel

Ratios are preserved

Closed under composition

Models change of basis

goaw

o an

S < o=




Projective Transformations

Projective transformations ... |
« Affine transformations, and y'
* Projective warps _W ]

Properties of projective transformations:
» Origin does not necessarily map to origin
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratios are not preserved
» Closed under composition
« Models change of basis

09 S

> QS

—o




Matrix Composition

Transformations can be combined by
matrix multiplication

tx|[cos® -sin® O]

1 0
y'I=[10 1 #||{sm® cos® O
wl [loo 1|l 0o o 1
p° = Tt R(©)

o o8

o3& o

S(5,8,)

IH OOI

)




2D image transformations

}:A /S " Q projective
translation
P 4
-—
Euclidean athne
\_—'/ v
Name Matrix #D.O.F. | Preserves: Icon
translation [ 1 ’ t ]2 5
2X
rigid (Euclidean) [ R ‘ t ]2 5 Q
oy
similarity [ SR‘ t L ; O
X
affine { A ] . D
2x3
projective [ H ]3><3 G

These transformations are a nested set of groups
 Closed under composition and inverse is a member



Image warping

Given a coordinate transform (x’,y”) = h(x,y) and a
source image f(x,y), how do we compute a
transformed image g(x’,y ") = (T(x,y))?



Forward warping

Send each pixel f(x,y) to its corresponding location
(x",y’) = T(x,y) in the second image

Q: what if pixel lands “between” two pixels?



Forward warping

fx,y) Yogx’y)

Send each pixel f(x,y) to its corresponding location
(x",y’) = T(x,y) in the second image
Q: what if pixel lands “between” two pixels?

A: distribute color among neighboring pixels (x",y’)
— Known as “splatting”



Inverse warping

Get each pixel g(x’,y ) from its corresponding location
(x,y) = T(x",y’) in the first image

Q: what if pixel comes from “between” two pixels?



Inverse warping

s T(x,y) :#
vt vy

fx,y) Yogx’y)

s ¥
\

Get each pixel g(x’,y ) from its corresponding location
(x,y) = T(x",y’) in the first image
Q: what if pixel comes from “between” two pixels?

A: Interpolate color value from neighbors
— nearest neighbor, bilinear, Gaussian, bicubic



Bilinear interpolation

Sampling at f(x,y):

(¢, +1) (t+1,74+1)
(z,y)
(t4+1,5)
flz,y) = (1 —=a)(1=0) f[i,j]
+a(1-0) fli+1,j]
+ab fli+ 1,5+ 1]
+(1 —a)d  fli, 5+ 1]




Forward vs. inverse warping

Q: which is better?

A: usually inverse—eliminates holes
* however, it requires an invertible warp function—not always possible...



