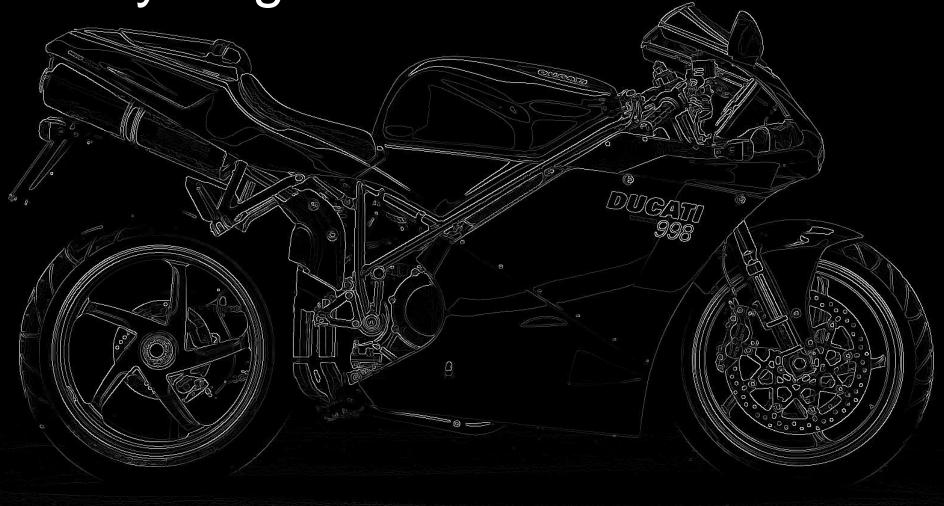
Canny Edge Detection



Raw User Strokes

Real-time Drawing Assistance through Crowdsourcing

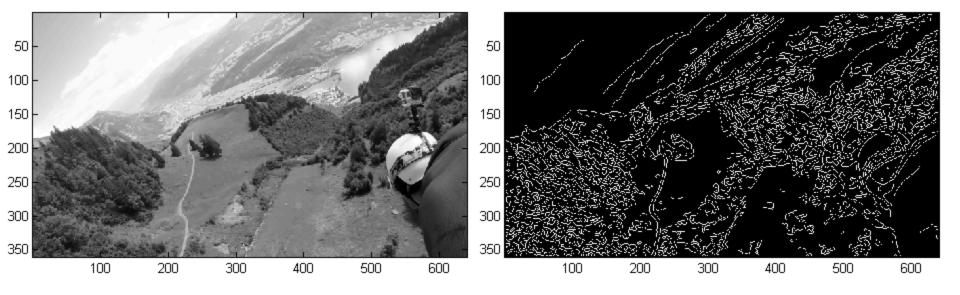
SIGGRAPH 2013

A. Limpaecher, N. Feltman, A. Treuille, and M. Cohen

CMU and Microsoft

Edge Detection

```
Code
   Jb = rgb2gray(J);
imagesc(Jb);axis image; colormap(gray);
bw = edge(Jb,'canny');
```



Numerical Image Filtering

Looping through all pixels

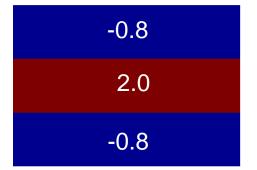
```
[nr,nc] = size(Jb);
J_out = zeros(nr,nc);
for i=1:nr,
  for j=1:nc;
     if (i<nr) && (i>1),
        J_out(i,j) = 2*Jb(i,j) - 0.8*Jb(i+1,j) - 0.8*Jb(i-1,j);
     else
        J_out(i,j) = Jb(i,j);
                                 (i,j)
     end
  end
end
figure; imagesc(J_out);colormap(gray)
```

Computation time: 0.050154 sec

Filter

nc

(i+1,j)



nr

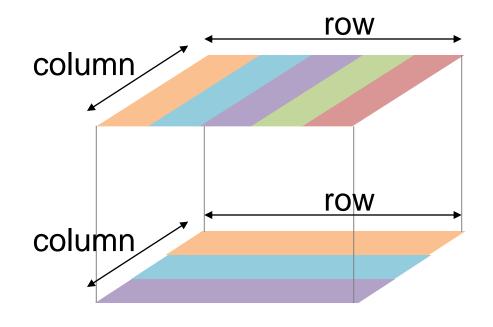
Numerical Image Filtering



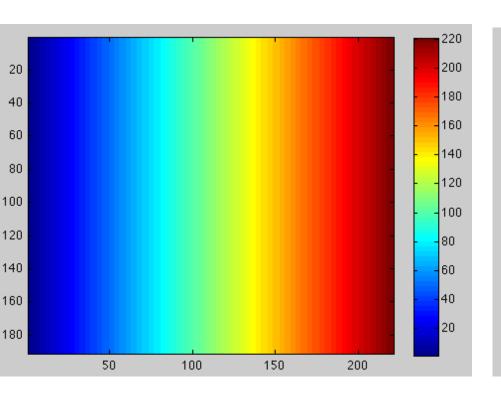
```
>> [x,y] = meshgrid(1:5,1:3)
```

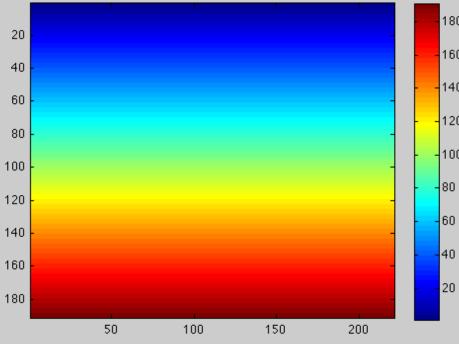
```
X =
```

```
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
```



[x,y] = meshgrid(1:nc,1:nr);
figure(1); imagesc(x); axis image; colorbar;
colormap(jet);
figure(2); imagesc(y); axis image; colorbar;
colormap(jet);





```
[x,y] = meshgrid(1:nc,1:nr);

y_up = y-1;
y_down = y+1;

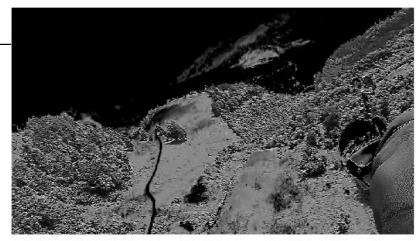
y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));

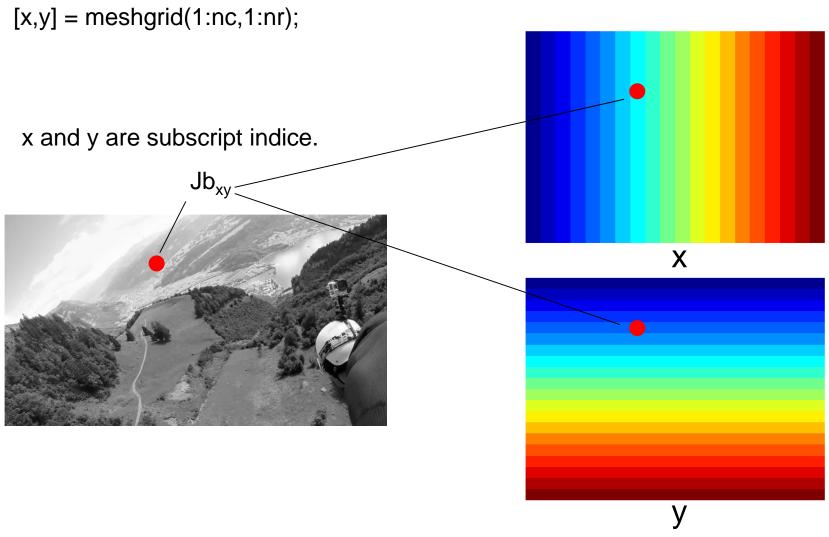
ind_up = sub2ind([nr,nc],y_up(:),x(:)); % create linear index
ind_down = sub2ind([nr,nc],y_down(:),x(:));
```

 $J_out = 2*Jb(:) - 0.8*Jb(ind_up) - 0.8*Jb(ind_$ $J_out = reshape(J_out, nr, nc);$

figure; imagesc(J_out);colormap(gray)

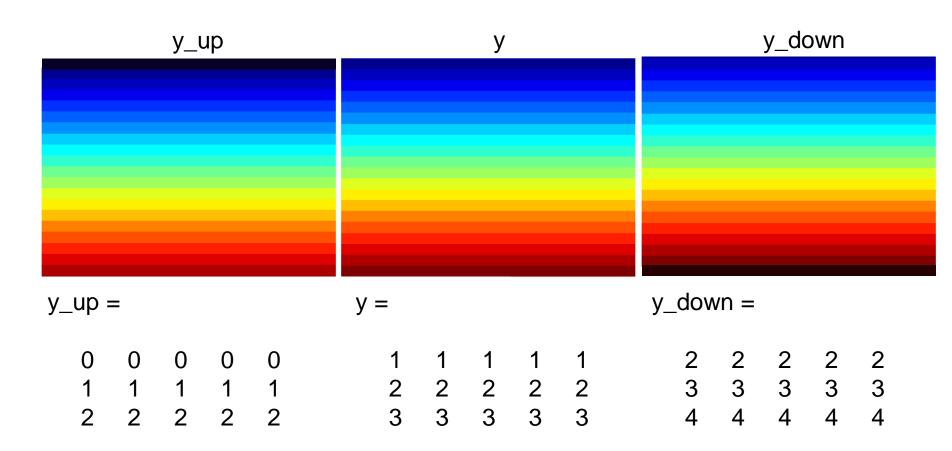
Computation time: 0.024047 sec



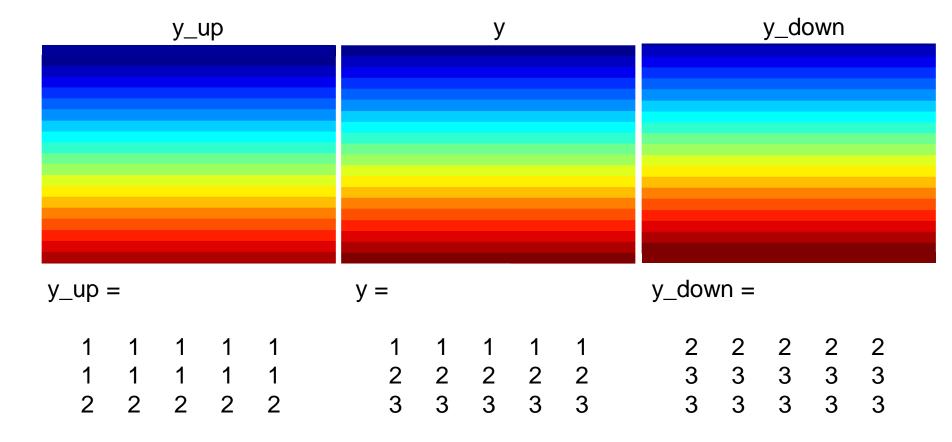


```
[x,y] = meshgrid(1:nc,1:nr);
```

```
y_up = y-1;
y_down = y+1;
```



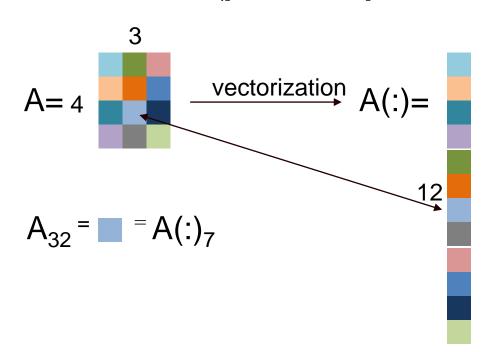
```
y_up = y-1;
y_down = y+1;
y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));
```



y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr] y_down = min(nr,max(1,y_down));

ind_up = sub2ind([nr,nc],y_up(:),x(:)); % create linear index ind_down = sub2ind([nr,nc],y_down(:),x(:));

linear_index = sub2ind([n_row, n_col], row_subscript, col_subscript)

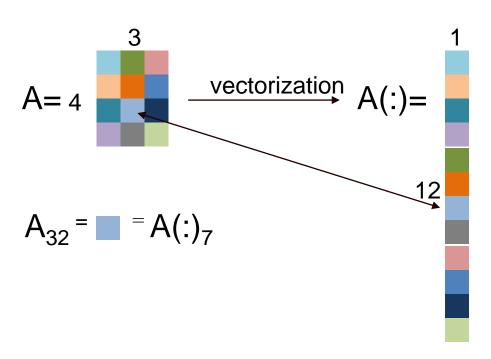


7 = sub2ind([4 3], 3,2)

y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr] y_down = min(nr,max(1,y_down));

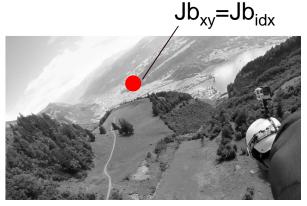
ind_up = sub2ind([nr,nc],y_up(:),x(:)); % create linear index ind_down = sub2ind([nr,nc],y_down(:),x(:));

linear_index = sub2ind([n_row, n_col], row_subscript, col_subscript)



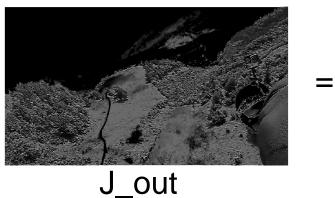
$$7 = sub2ind([4 3], 3,2)$$

$$ind_up = \underbrace{sub2ind([nr,nc],y_up(:),x(:))}_{Operation on vectors}$$

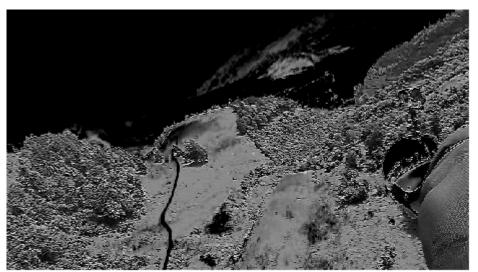


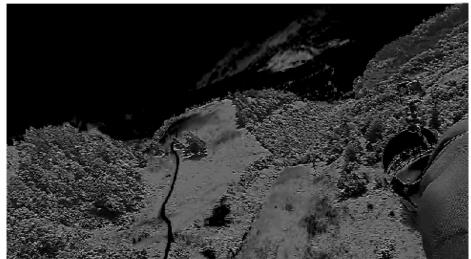
```
J_out = 2*Jb(:) - 0.8*Jb(ind_up) - 0.8*Jb(ind_down);
J_out = reshape(J_out, nr, nc);
```

figure; imagesc(J_out);colormap(gray)



With loop Without loop





Computation time: 0.050154 sec Computation time: 0.024047 sec

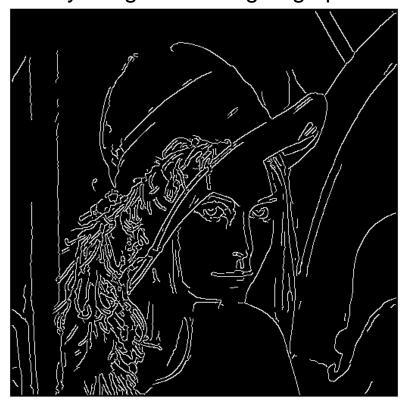
Canny Edge Detection

 $B(i,j) = \begin{cases} 1 & \text{if } I(i,j) \text{ is edge} \\ 0 & \text{if } I(i,j) \text{ is not edge} \end{cases}$

Objective: to localize edges given an image.

Original image, I

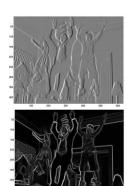
Binary image indicating edge pixels



Edge map image, B

Canny Edge Detection

- 1. Filter image by derivatives of Gaussian
- 2. Compute magnitude of gradient
- 3. Compute edge orientation
- 4. Detect local maximum
- 5. Edge linking



CIS581, Computer Vision
Project 1, Image Edge Detection
Written part due on Sept. 15, 3:00pm
Programming part due on Sept. 24, 3:00pm

Overview

This project focuses on understanding image convolution and edge detection. Both the written part and the programming part are to be done individually. All matlab functions should follow the names and arguments stated in the problems in order for them to run properly with the grading script. A test script will be provided shortly that will call your functions to ensure they will run inside the grading script.

To submit the assignment, submit a zip file containing all your codes and pdf files (for written part only) via Canvas.

Recall the definition of convolution, $J = I \otimes g$ in 1D as

$$J(i) = \sum_{k} I(i - k)g(k), \qquad (1)$$

and in 2D as

$$J(i, j) = \sum_{k,l} I(i - k, j - l)g(k, l).$$
 (2)

Typically, I is an image, g is a filter, and J is the filter response of I under g.

Programming Part

5. Edge detection

Write a Matlab function E = cannyEdge(I)

Compute the Canny edges. Canny edges are defined as local maxima of the image gradient. Following the steps described in the lecture notes:

- (a) compute gradient magnitude and orientation,
- (b) seek local maximum in the gradient orientation,
- (c) continue search in the edge orientation of detected edge point.

We provide the framework of the program. You need to follow the framework and complete the functions findDerivatives, nonMaxSup and edgeLink. We also include some vigualization in the code which can be used for delegating. Disk

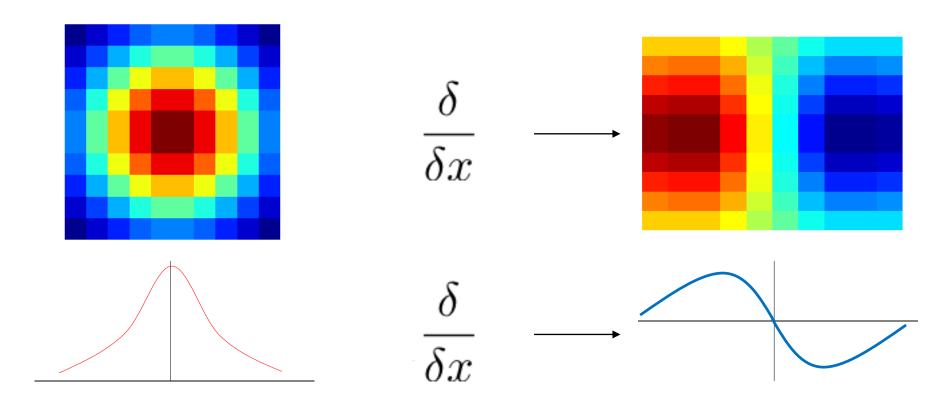
1) Compute Image Gradient

the first order derivative of Image I in x, and in y direction

Edge Detection, Step 1, Filter out noise and compute derivative:

$$(rac{\delta}{\delta x}\otimes G)$$

Gradient of Gaussian

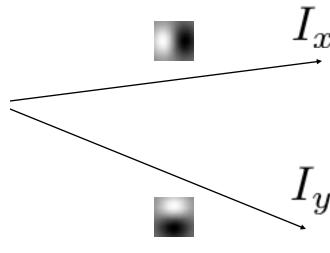


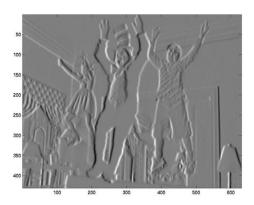
Edge Detection, Step 1, Filter out noise and compute derivative:

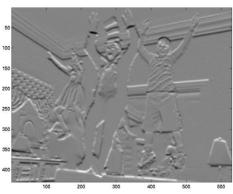
Image

$$\otimes (rac{\delta}{\delta x} \otimes G)$$

Smoothed Derivative



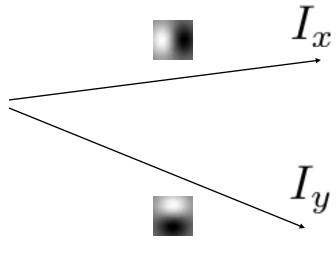


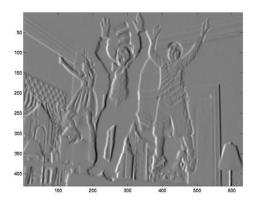


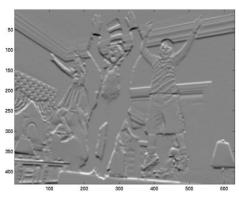
Edge Detection, Step 1, Filter out noise and compute derivative:

In matlab:

- >> [dx,dy] = gradient(G); % G is a 2D gaussain
- >> Ix = conv2(I,dx,'same'); Iy = conv2(I,dy,'same');



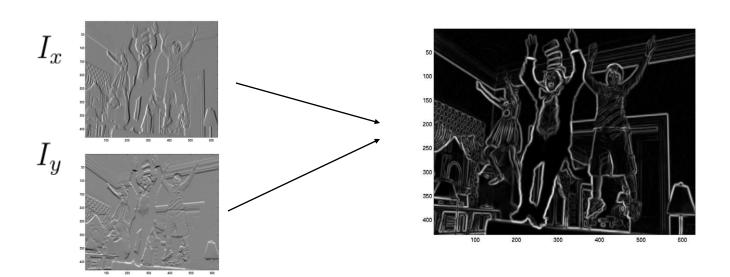




Edge Detection: Step 2 Compute the magnitude of the gradient

In Matlab:

 \gg Im = sqrt(Ix.*Ix + Iy.*Iy);



We know roughly where are the edges, but we need their precise location.

Finding the orientation of the edge

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The image gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

– how does this relate to the direction of the edge?

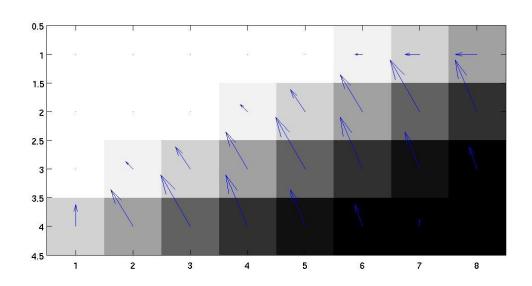
$$\theta_{edge} = tan^{-1} \left(-\frac{\delta f}{\delta x} / \frac{\delta f}{\delta y} \right)$$

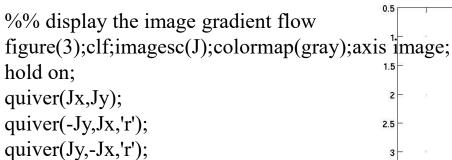
```
%% define image gradient operator
dy = [1;-1];
dx = [1,-1];

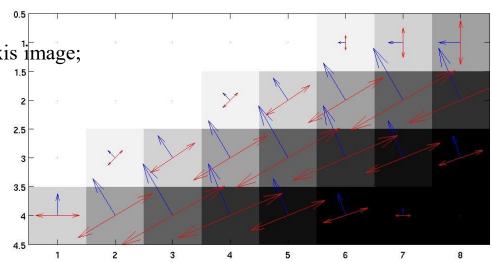
%% compute image gradient in x and y
AA_y = conv2(AA,dy,'same');
AA_x = conv2(AA,dx,'same');

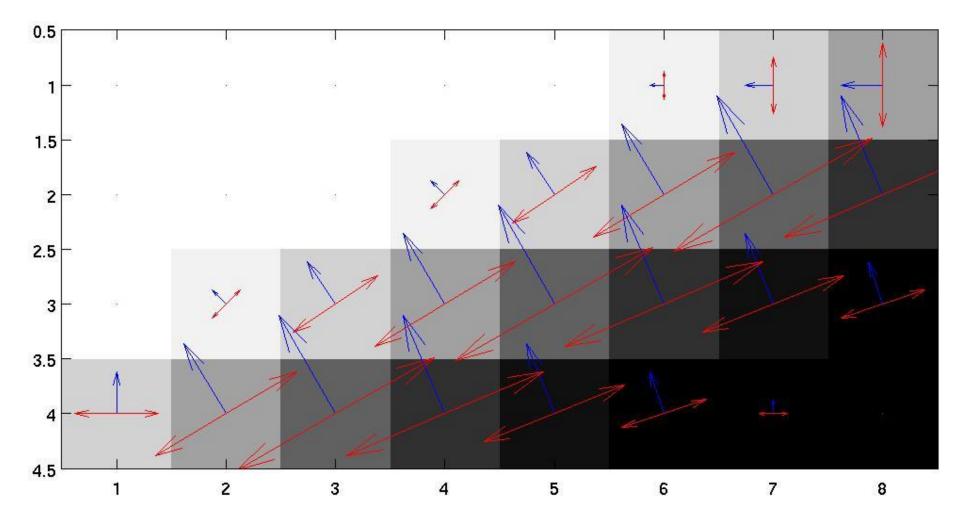
Jy = AA_y(1:end-2,2:end-1);
Jy(1,:) = 0;

Jx = AA_x(2:end-1,1:end-2);
Jx(:,1) = 0;
```









[gx,gy] = gradient(J); mag = sqrt(gx.*gx+gy.*gy); imagesc(mag);colorbar

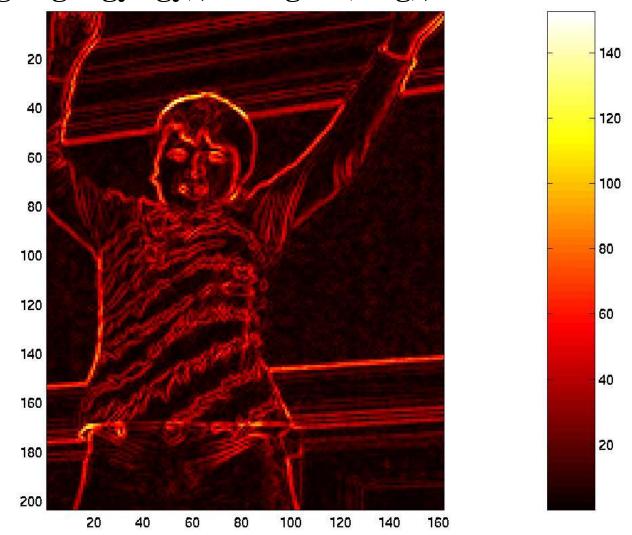
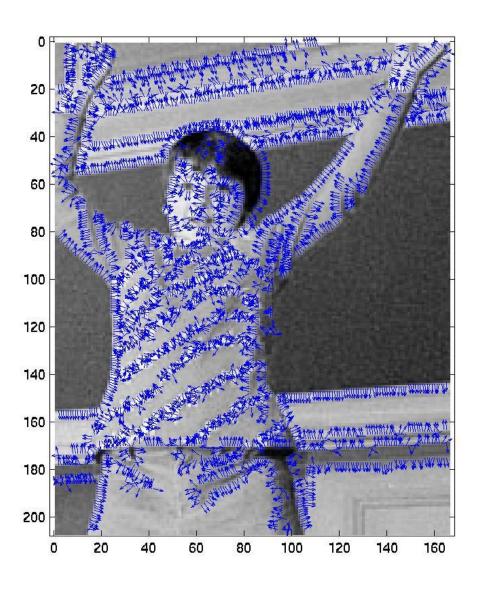
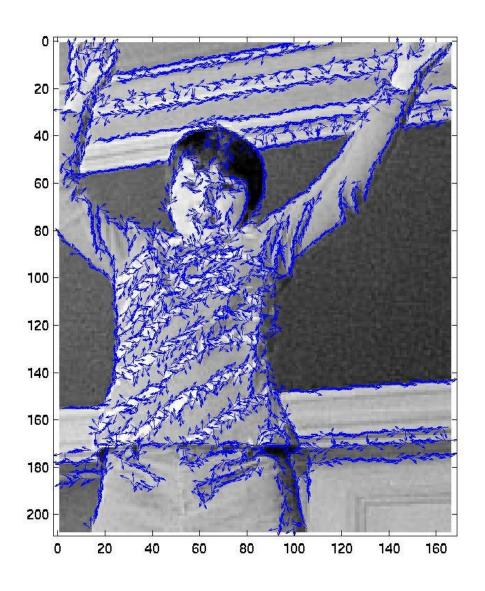


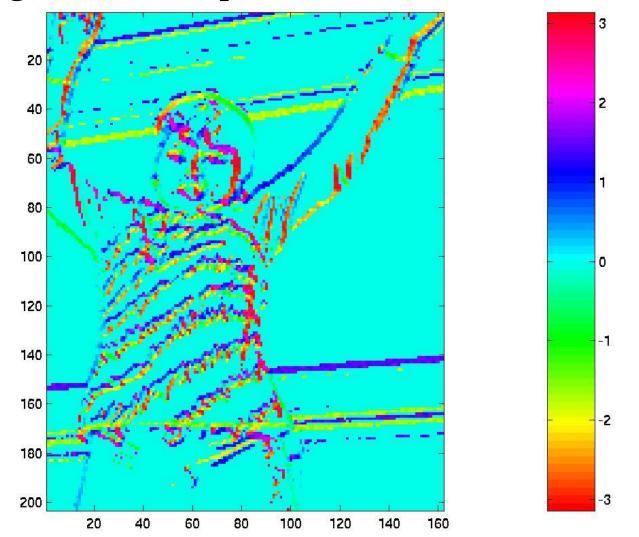
image gradient direction:



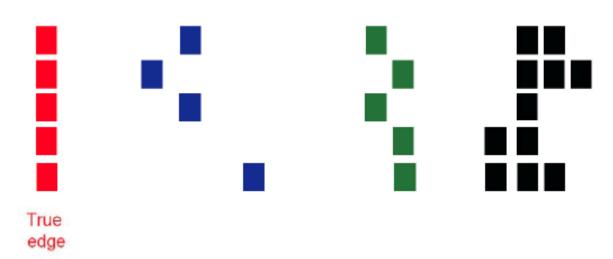
Edge orientation direction:



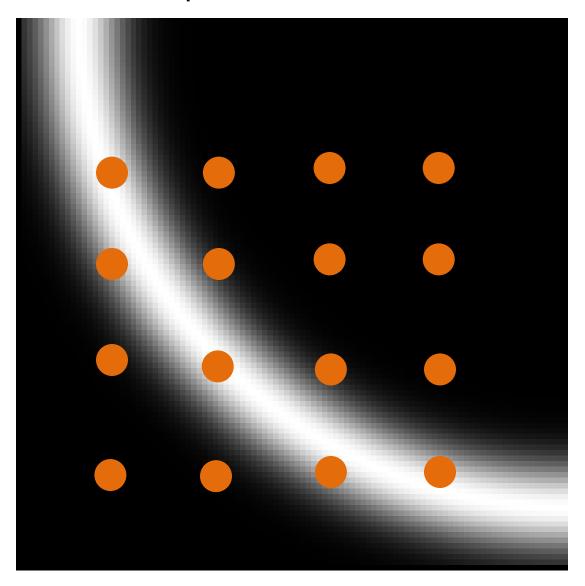
[gx,gy] = gradient(J); th = atan2(gy,gx); % or you can use:[th,mag] = cart2pol(gx,gy); imagesc(th.*(mag>20));colormap(hsv); colorbar



- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - Good localization: the edges detected must be as close as possible to the true edges
 - Single response: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge

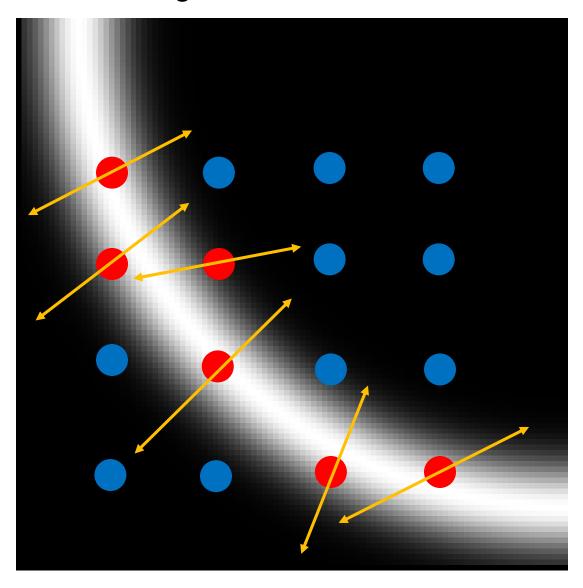


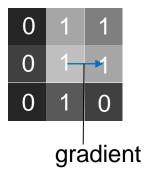
Discretized pixel locations



(Forsyth & Ponce)

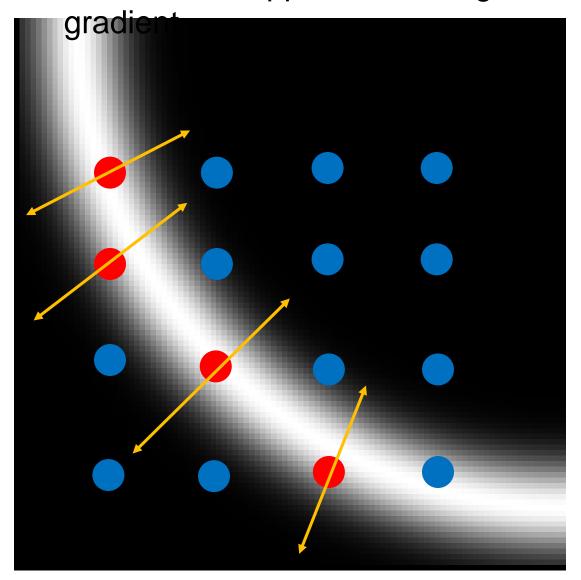
Thesholding

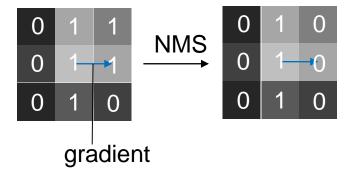




(Forsyth & Ponce)

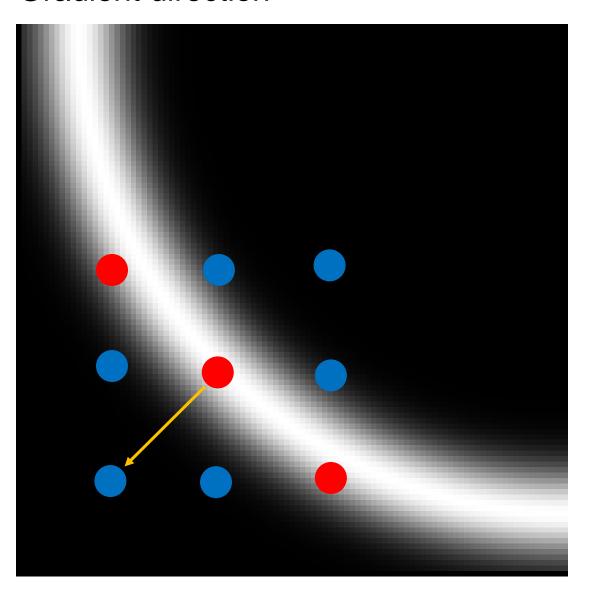
Non-maximum suppression along the line of the

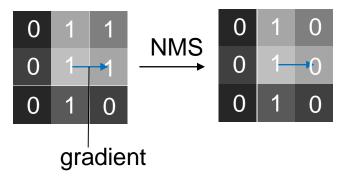




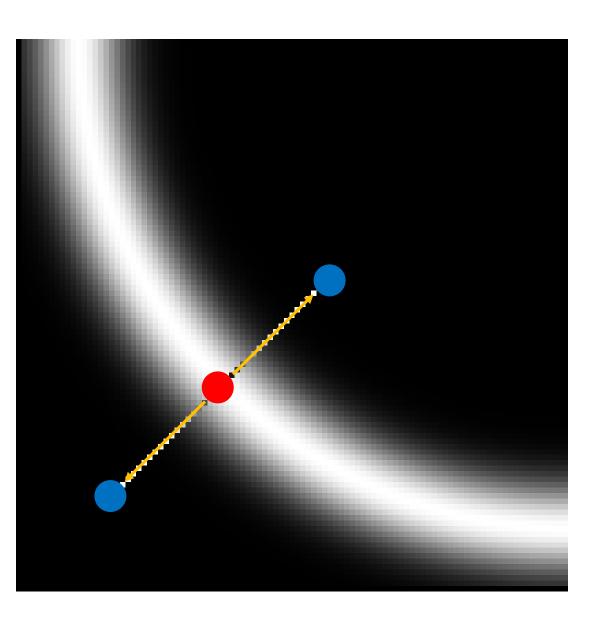
(Forsyth & Ponce)

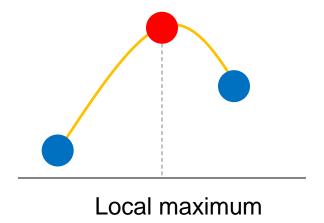
Gradient direction





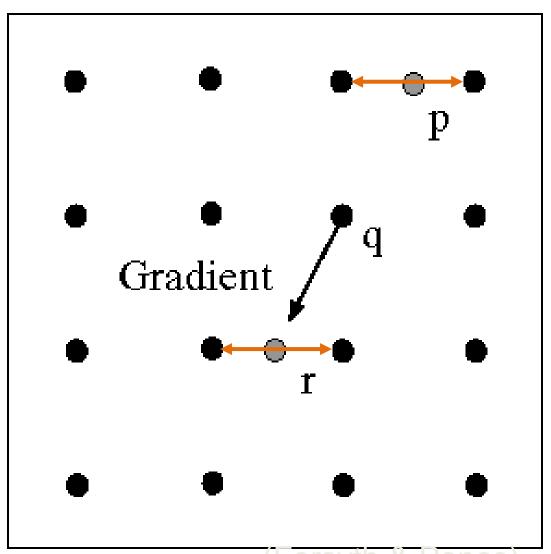
(Forsyth & Ponce)





(Forsyth & Ponce)

No intensity values at r and p: Interpolate these intensities using neighbor pixels.

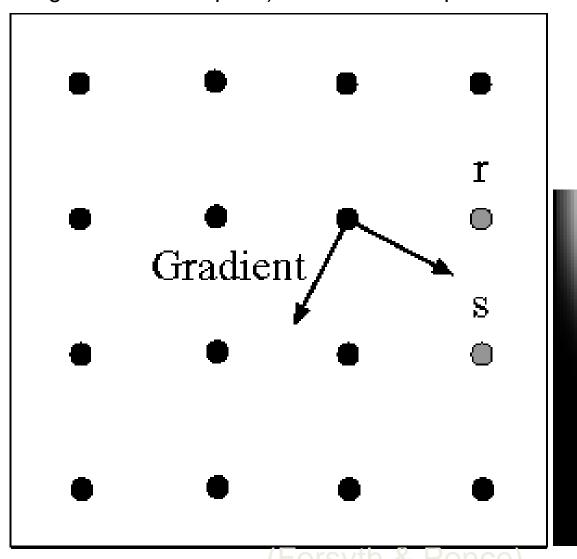


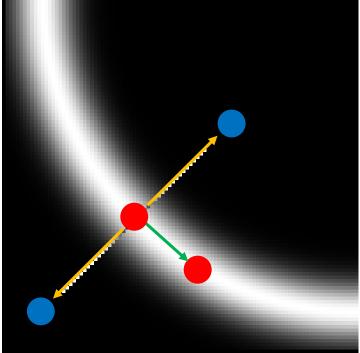
Where is next edge poin

Forsyth & Ponce)

Where is next edge point?

we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points

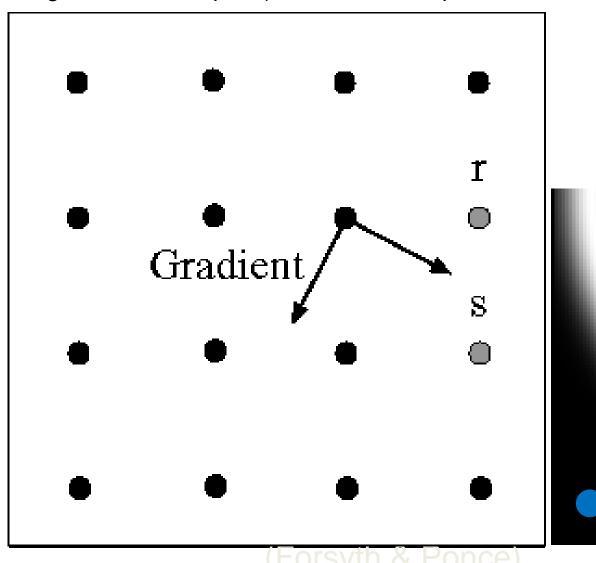


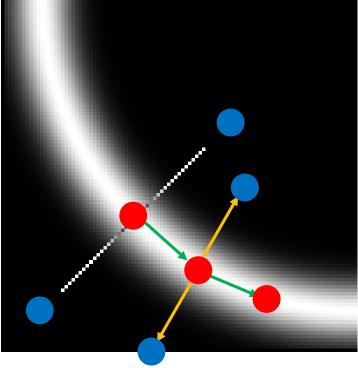


Forsyth & Ponce)

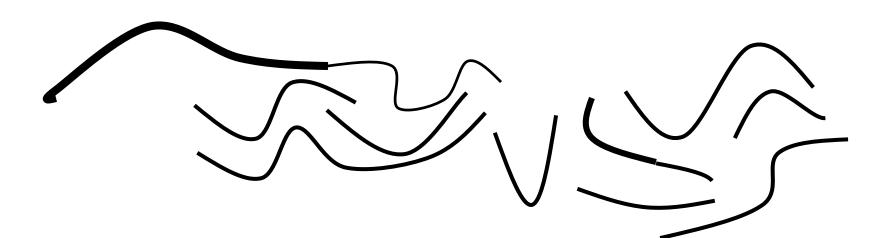
Where is next edge point?

we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points

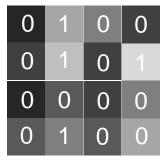


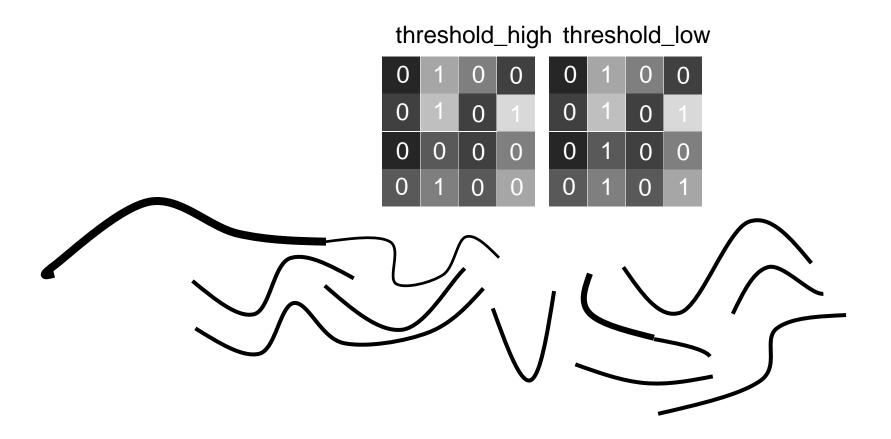


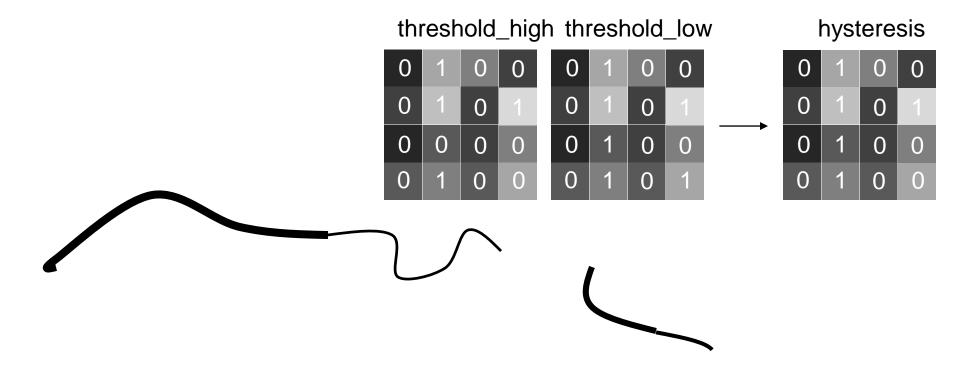
- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.



- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.

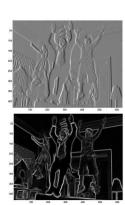






Canny Edge Detection

- 1. Filter image by derivatives of Gaussian
- 2. Compute magnitude of gradient
- 3. Compute edge orientation
- 4. Detect local maximum
- 5. Edge linking



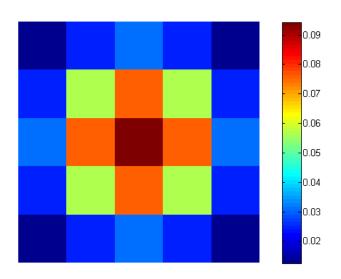

```
img = imread ('Lenna.png');
img = rgb2gray(img);
img = double (img);
```

% Value for high and low thresholding threshold_low = 0.035; threshold_high = 0.175;

%% Gaussian filter definition (https://en.wikipedia.org/wiki/Canny_edge_detector) G = [2, 4, 5, 4, 2; 4, 9, 12, 9, 4;5, 12, 15, 12, 5;4, 9, 12, 9, 4;2, 4, 5, 4, 2];

G = 1/159.* G;

%Filter for horizontal and vertical direction $dx = [1 \ 0 \ -1];$ $dy = [1; \ 0; \ -1];$



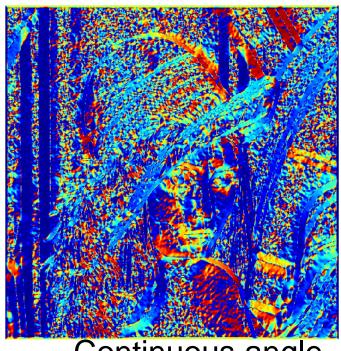
```
% % Convolution of image with Gaussian Gx = conv2(G, dx, 'same'); Gy = conv2(G, dy, 'same'); % Convolution of image with Gx and Gy Ix = conv2(img, Gx, 'same'); Iy = conv2(img, Gy, 'same');
```


lx ly

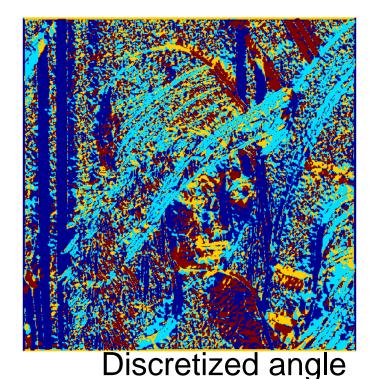
angle = atan2(ly, lx);

%% Edge angle conditioning angle(angle<0) = pi+angle(angle<0);

% Edge angle discretization into 0, pi/4, pi/2, 3*pi/4 angle(angle>=0&angle<pi/8) = 0; angle(angle>=pi/8&angle<3*pi/8) = pi/4; angle(angle>7*pi/8) = pi-angle(angle>7*pi/8)ngle(angle>=3*pi/8&angle<5*pi/8) = pi/2; angle(angle>=5*pi/8&angle<=7*pi/8) = 3*pi/4;



Continuous angle



```
%Calculate magnitude
magnitude = sqrt(lx.*lx+ly.*ly);
edge = zeros(nr, nc);
```

%% Non-Maximum Supression

edge = non_maximum_suppression(magnitude, angle, edge);

gradient

NMS

edge = edge.*magnitude;

Gradient magnitude

Localized edge

%% Hysteresis thresholding

% for weak edge

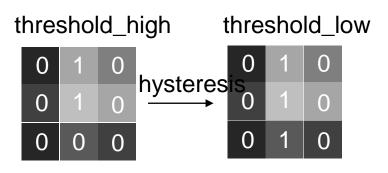
threshold_low = threshold_low * max(edge(:));

% for strong edge

threshold_high = threshold_high * max(edge(:));

linked_edge = zeros(nr, nc);

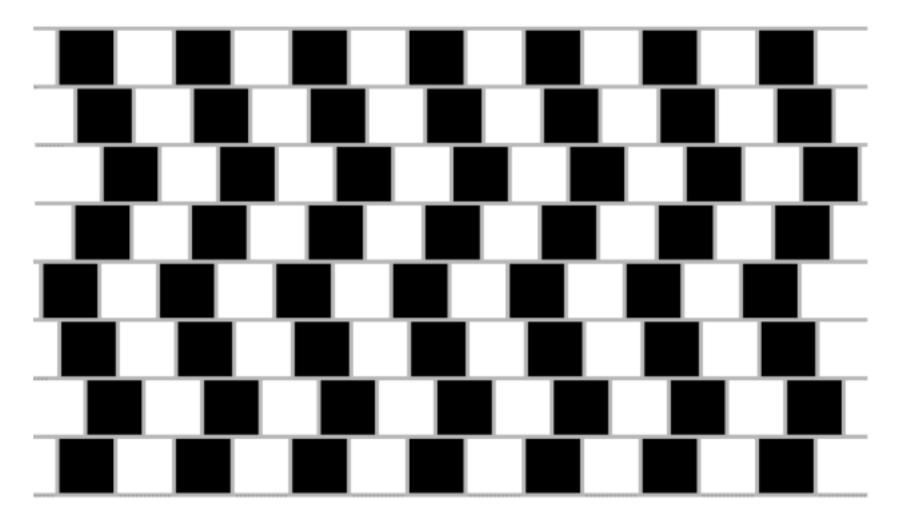
linked_edge = hysteresis_thresholding(threshold_low, threshold_high, linked_edge, ed



http://www.cfar.umd.edu/~fer/optical/index.html

The rows of black and white squares are all parallel.

The vertical zigzag patterns disrupt our horizontal perception.



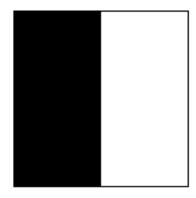


Figure 1: Type 1 Edge

This edge can be represented by a function. The picture below shows the gray value changes from black to white in the horizontal direction.

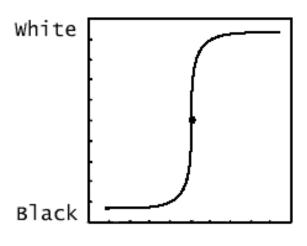
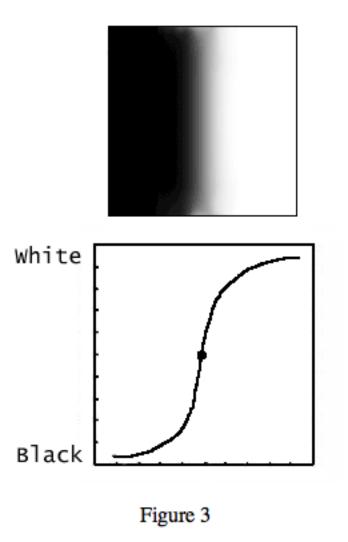


Figure 2

The edge is at the location of the inflection point on the curve, indicated by the black dot. If we were to smooth this image, it would look like this. Cornelia Fermüller

The edge is at the location of the inflection point on the curve, indicated by the black dot. If we were to smooth this image, it would look like this.



As you can see, smoothing the image does not change the location of the edge.

The second case is a line on a background of different intensity.

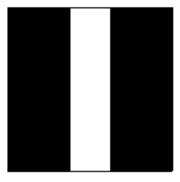


Figure 4: Type 2 Edge

This again can be represented as a function with two inflection points representing the edges at the boundaries of the line and the background regions.

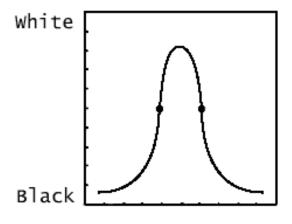


Figure 5

When the image is smoothed the edges drift apart as shown.

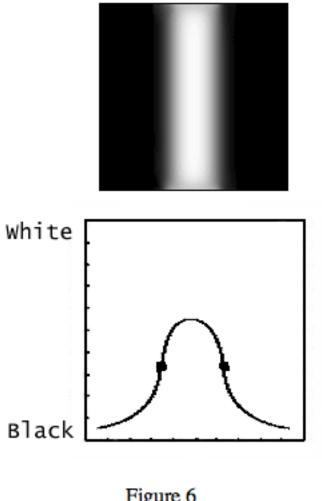


Figure 6

The third case is a gray line between a bright and a dark region.

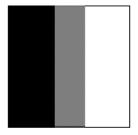


Figure 7: Type 3 Edge

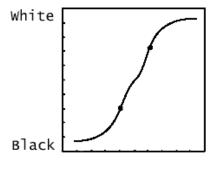
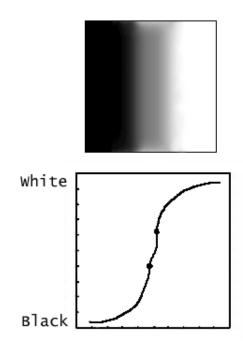
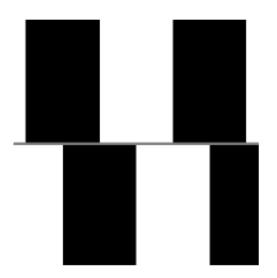


Figure 8

When this image is smoothed the edges at the boundary of the line move toward each other.



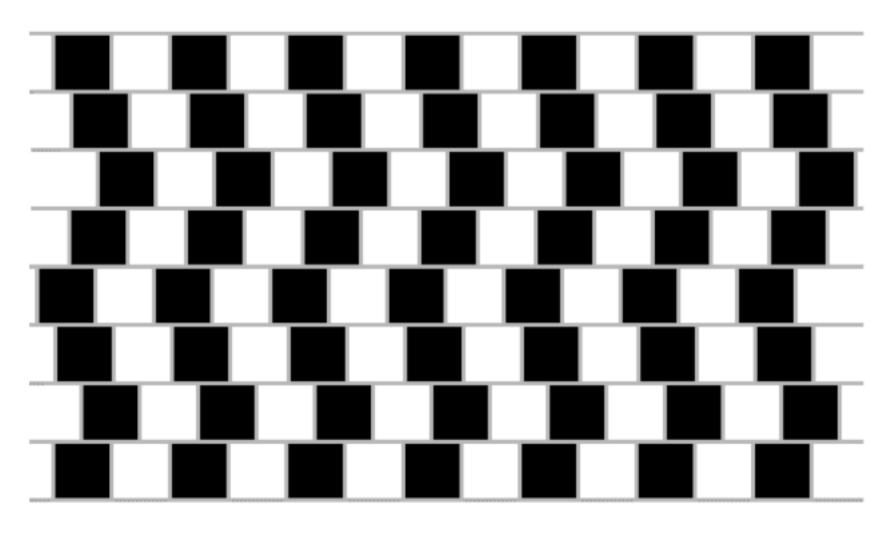


If we smooth the image and then apply edge detection, we obtain edges as shown below.

http://www.cfar.umd.edu/~fer/optical/index.html

The rows of black and white squares are all parallel.

The vertical zigzag patterns disrupt our horizontal perception.



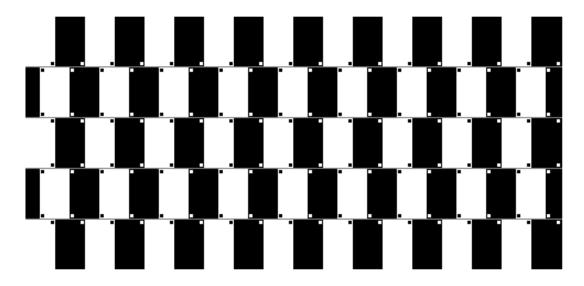
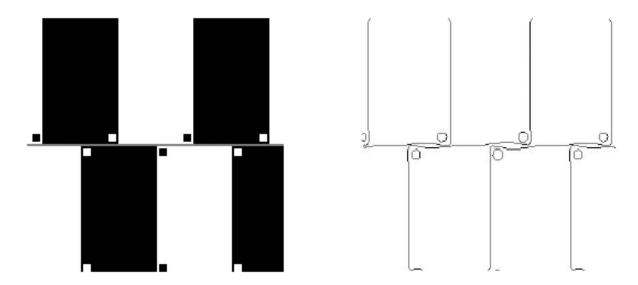
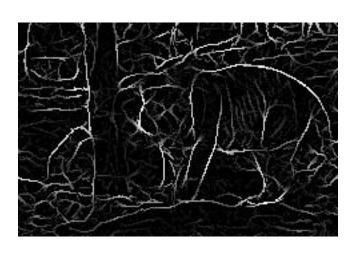


Figure 4

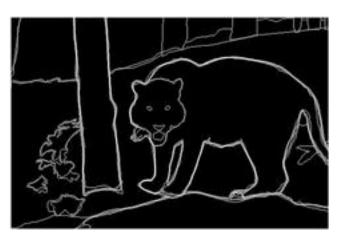
If we zoom in and look at the edges we notice that the added squares compensate for the drifting of the lines. There is still "waviness" to the edges, but it is too weak to be perceived.



Is Edge Detection Solved?

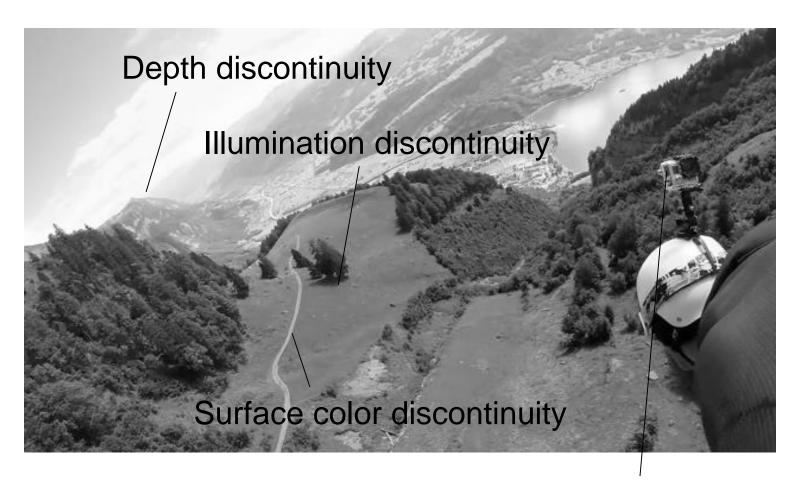


 \Rightarrow Edge detector



⇒ Human segmentation

Edge Formation Factors



Surface normal discontinuity

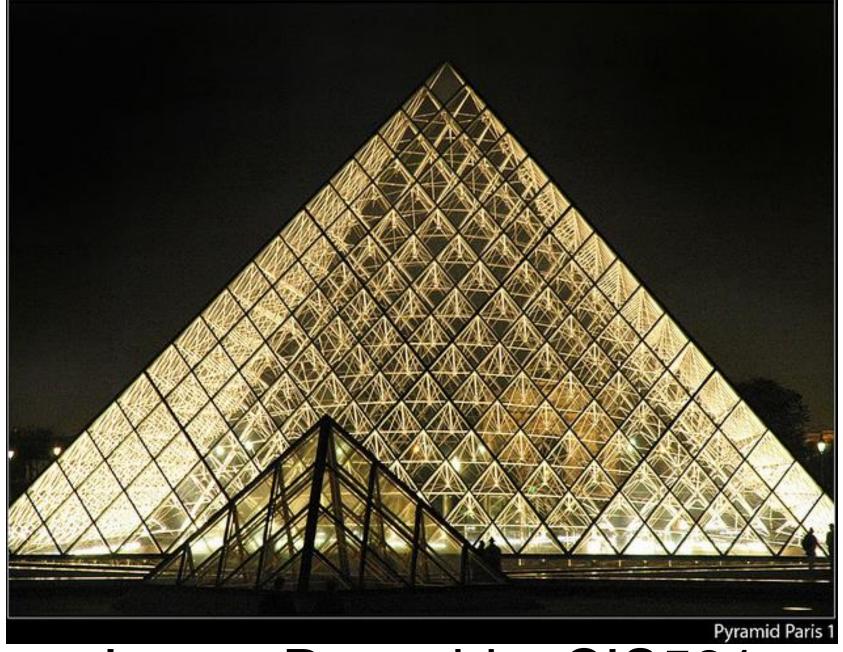
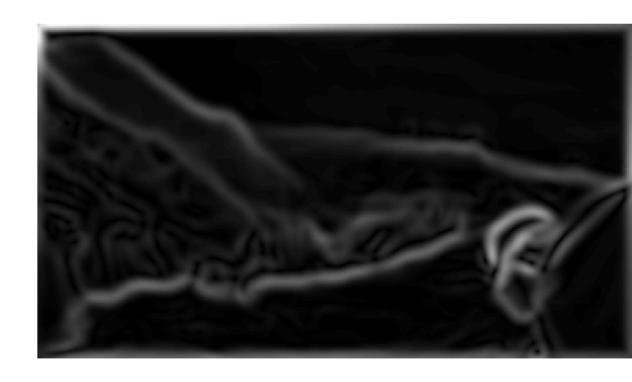
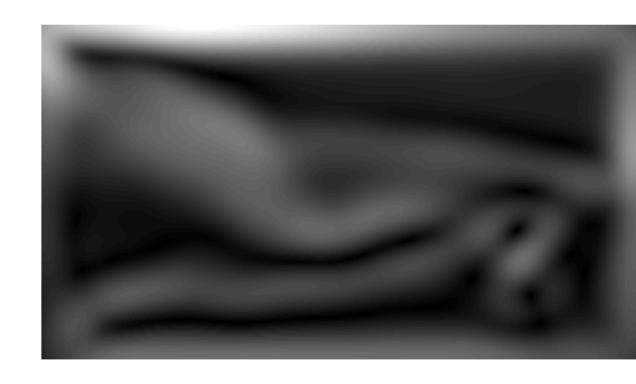
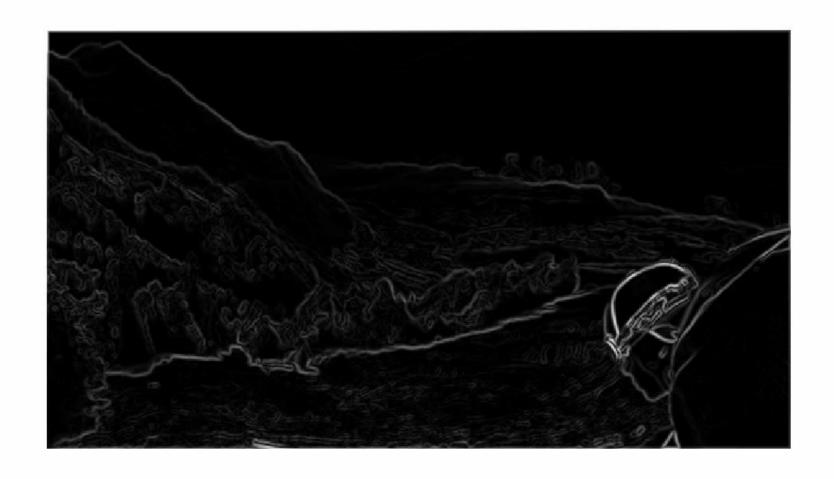


Image Pyramid, CIS581

Image Scale

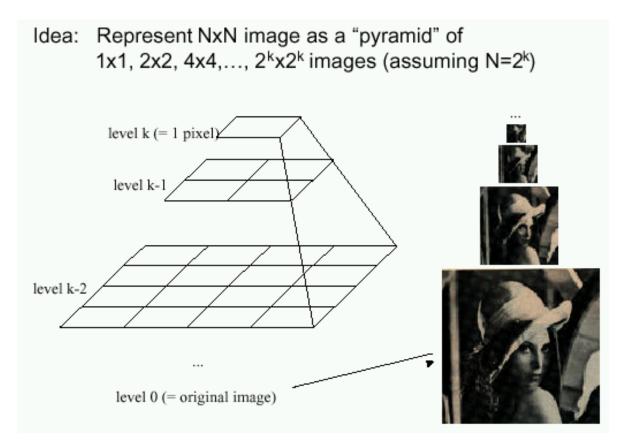






Different scale of image encodes different edge response.

Image Pyramids

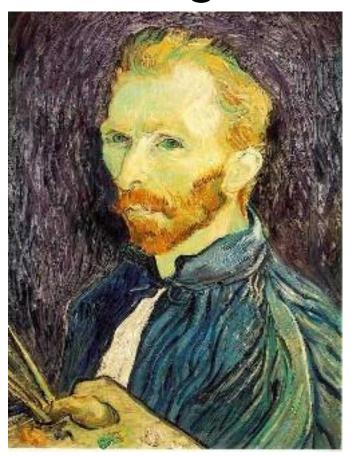


Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

Figure from David Forsyth

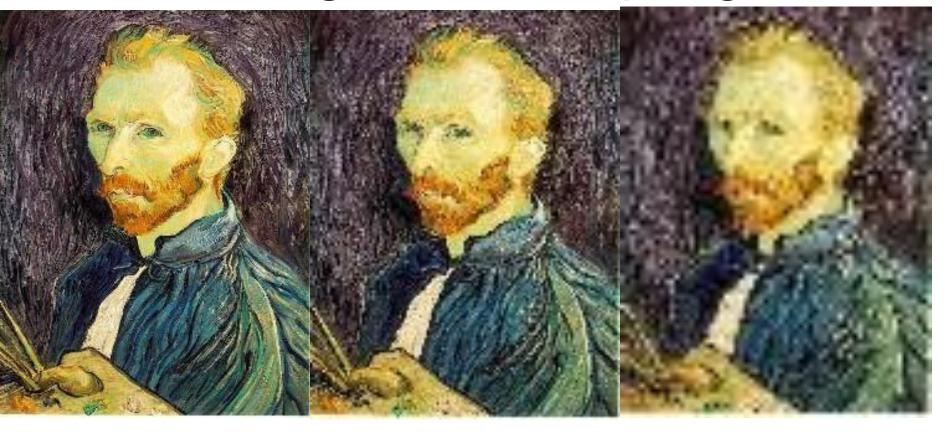
Image sub-sampling



Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

1/8

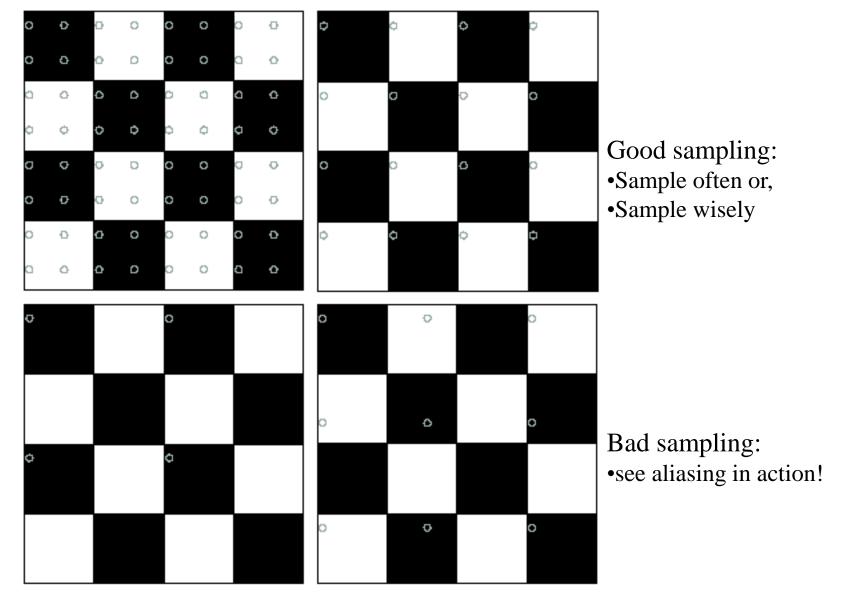
Image sub-sampling



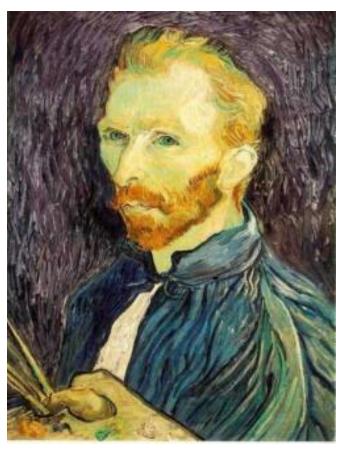
1/2 1/4 (2x zoom) 1/8 (4x zoom)

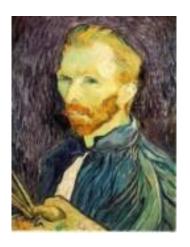
Why does this look so bad?

Sampling



Gaussian pre-filtering





G 1/8

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-

Gaussian 1/2 G 1/4 G 1/8

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Comparison

