Canny Edge Detection

e

N

Raw User Strokes

Real-time Drawing Assistance through Crowdsourcing

Edge Detection

Code
Jb = rgb2gray(J);

imagesc(Jb);axis image; colormap(gray);

bw = edge(Jb,'canny");

&0 a0

100 100

150 150

200 [200
250 250

3aa 300

350

340 5 &% e i i - T A
100 200 300 400 500 B0 100 200 300 400 500 B0

Numerical Image Filtering

Filter
Looping through all pixels

[nr,nc] = size(Jb);
J_out = zeros(nr,nc);
for i=1:nr,
for j=1:nc;
if (i<nr) && (i>1),
J_out(i,)) = 2*Ib(i,j) - 0.8*Ib(i+1,j) - 0.8*Ib(i-1,));

else) nc :
j_OUt(i’j) = Jb(i,)); (i,j)\ge(i'l’j) RS o
en g
end i+t A ,

end
figure; imagesc(J_out);colormap(gra

Computation time: 0.050154 sec

nr

o)
=
O
=
LL
D
o)
®
£
[s
O
O
=
=
Z

Convolution without Looping

using meshgrid

>> [X,y] = meshgrid(1:5,1:3)

NN

N -

wWw ww

N -

DS

N -

o1 01 O1

w N -

row

COluArV

row

coluy

[X,¥] = meshgrid(1:nc,1:nr);

figure(1); imagesc(x); axis image; colorbar;

colormap(jet);

figure(2); imagesc(y); axis image; colorbar;

colormap(jet);

20

40

G0
2d

100

120

140

160

180

100 150 200

220

200

120

4160

~140

~4120

~100

-850

G0

40

20

80 |

100

120 |

140

160

180

=0 100 120 200

18I0

16l

141

120

<100

-850

Convolution without Looping
using meshgrid

[X,y] = meshgrid(1:nc,1:nr);

y_up =y-1;
y_down = y+1;

y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));

ind_up = sub2ind([nr,nc],y_up(:),X(:)); % create linear index
ind_down = sub2ind([nr,nc],y_down(:),x(%));

J_out = 2*Jb(:) - 0.8*Ib(ind_up) - 0.8*Ib(ind_
J_out = reshape(J_out, nr, nc);

figure; imagesc(J_out);colormap(gray)

Computation time: 0.024047 sec

Convolution without Looping
using meshgrid

[X,y] = meshgrid(1:nc,1:nr);

x and y are subscript indice.

Convolution without Looping
using meshgrid

[X,y] = meshgrid(1:nc,1:nr);

y_up =y-1;
y_down = y+1;

y _up y y _down

Convolution without Looping
using meshgrid

y_up =y-1;

y_down = y+1;

y_up = min(nr,max(1,y_up)); % keep y _up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));

y_up y_down

y_up = y_down =
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
2 2 2 2 2 3 3 3 3 3 3 3 3 3 3

Convolution without Looping
using meshgrid

y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));

ind_up = sub2ind([nr,nc],y_up(:),X(:)); % create linear index
ind_down = sub2ind([nr,nc],y_down(:),X(:));

linear_index = sub2ind([n_row, n_col], row_subscript, col subscript)

3

7 =sub2ind([4 3], 3,2)
vectorization N
> A(_)_

=4

A32

B
“A(); L]
-

Convolution without Looping
using meshgrid

y_up = min(nr,max(1,y_up)); % keep y_up index within legal range of [1,nr]
y_down = min(nr,max(1,y_down));

ind_up = sub2ind([nr,nc],y_up(:),X(:)); % create linear index
ind_down = sub2ind([nr,nc],y_down(:),X(:));

linear_index = sub2ind([n_row, n_col], row_subscript, col subscript)

3 1

7 = sub2ind([4 3], 3,2)

B ind_up = sub2ind([nr,nc],y_up(:),x(:))
Operation on vectors

=4

vectorization N
> A(_)_

A32

Convolution without Looping
using meshgrid

J_out = 2*Jb(;) - 0.8*Ib(ind_up) - 0.8*Ib(ind_down);
J_out = reshape(J_out, nr, nc);

figure; imagesc(J_out);colormap(gray)

A e TN T
-2 S T
- i~ A
\‘ ey
=
z : \ ’
e

Jb(ind_down)

3 ey

Y 3

Jb(ind_up)

With loop Without loop

Computation time: 0.050154 sec Computation time: 0.024047 sec

Canny Edge Detection

B(i.) { 1 i.f I(i.,j.) i.s edge
\ 0 iflI(i,)) is not edge

Obijective: to localize edges given an image.
Binary image indicating edge pixels

»

Originai image, |

Canny Edge Detection

1. Filter image by derivatives of Gaussian
2. Compute magnitude of gradient

3. Compute edge orientation

4. Detect local maximum

5. Edge linking

CIS581, Computer Vision
Project 1, Image Edge Detection
Written part due on Sept. 15, 3:00pm
Programming part due on Sept. 24, 3:00pm

Overview

This project focuses on understanding image convolution and edge detection. Both
the written part and the programming part are to be done individually. All matlab
functions should follow the names and arguments stated in the problems in order for
them to mn properly with the grading script. A test seript will be provided shortly
that will call your functions to ensure they will run inside the grading script.

To submit the assignment, submit a zip file containing all vour codes and pdf files
(for written part only) via Canvas.

Recall the definition of convolution, J = I @ gin 1D as
iy = E Iii — E)glk), (1)
k

and in 20 as
gy =3 =k j—Daglk1). (2)
&
Typically, [is an image, g is a filter, and J is the filter response of [under g.

Programming Part

. Edge detection

Write a Matlab function E = cannyEdge(I)

Compute the Canny edges. Canny edges are defined as local maxima of the
image gradient. Following the steps described in the lecture notes:

(a) compute gradient magnitude and orientation,

(b) seek local maximum in the gradient orientation,

(¢) continue search in the edge orientation of detected edge point.

We provide the framework of the program. You need to follow the framework
and complete the functions findDerivatives, nonMazSup and edgeLlink. We also

fom mlasda mmsnn sdrmealicadlan 2o dha cnda cdhial anc ko ssmad A Foe dalhcccacalonca THAL

1) Compute Image Gradient

the first order derivative of Image | in X,
and in y direction

Edge Detection, Step 1,

Filter out noise and compute derivative:

0
$®G)

Gradient of Gaussian

SN & -

Edge Detection, Step 1,
Filter out noise and compute derivative:

Edge Detection, Step 1,
Filter out noise and compute derivative:

In matlab:
>> [dx,dy] = gradient(G); % G is a 2D gaussain
>> |x = conv2(l,dx,’'same’); ly = conv2(l,dy,’same’);

Edge Detection: Step 2
Compute the magnitude of the gradient

In Matlab:
>> |m = sqrt(Ix.*Ix + ly.*ly);

We know roughly where are the edges, but we need their precise
location.

Finding the orientation of the edge

« The gradient of an image:
— [0f Of
V= [ax’ ay]

« The gradient points in the direction of most rapid change in intensity

| vi=[% 0 l V=5 5]
of k

* The image gradient direction is given by:
f = tan—1 (af/)

— how does this relate to the direction of the edge?

of of
ox 5y)

Ocdage = tan™ 1(

%% define image gradient operator ,
dy = [1;-1];
dx =[1,-1];

%% compute 1mage gradient in x and y
AA y=conv2(AA,dy,'same'); 3
AA x=conv2(AA,dx,'same'); 35

Jy=AA y(l:end-2,2:end-1); a5
Jy(1,:) = 0;

Jx =AA_x(2:end-1,1:end-2);
Ix(:,1)=0;

0.5

%% display the image gradient flow
figure(3);clf;imagesc(J);colormap(gray);axis i

hold on; e
quiver(Jx,Jy); ?
quiver(-Jy,Jx,'r"); 25
quiver(Jy,-Jx,'r"); 3

3.5

4

4.5

[0x,9y] = gradient(J);
mag = sgrt(gx.*gx+gy.*gy); Imagesc(mag);colorbar

d

1

140

20
40

1120
60

-100

80

100 ke

120 50
140
40
160

180 20

200
20 40 60 80 100 120 140 160

Image gradient direction:

20

40 7 = ‘ w\“\&wm\ ‘ & g2
i !!(g

A ML

60
80
100
120

140

TR

160 §
= o ;
m Lt

(i, Jy”

180

200

TR AL

20 40 60 80 100

|
120

I
140 160

Edge orientation direction:

20
40
60 -4
80 Iy
100
120
140
160
160 it

200

0 20 40 60 80 100 120 140 160

[0x,9y] = gradient(J);
th = atan2(gy,gx); % or you can use:[th,mag] = cart2pol(gx,gy);
Imagesc(th.*(mag>20));colormap(hsv); colorbar

20 40 60 80 100 120 140 160

« Criteria for an “optimal” edge detector:

« Good detection: the optimal detector must minimize the
probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges)

« Good localization: the edges detected must be as close as
possible to the true edges

« Single response: the detector must return one point only for each
true edge point; that is, minimize the number of local maxima
around the true edge

lrue
Eﬂﬂiz“

Source: L. Fel-Fei

Discretized pixel locations

Thesholding

=

gradient

Non-maximum suppression along the line of the

B o

gradient

—)f

NMS

—

010

Gradient direction

O
m.ﬁ: ann

gradient

NMSE

Local maximum

No intensity values at r and p:

Interpolate these intensities using neighbor pixels.

& & 8—3
P
@ 9
_ q
(radient
9 &—IT—9
T

Where iIs next edge poin

Where is next edge point?

we construct the tangent to the edge curve (which is normal to the
gradient at that point) and use this to predict the next points

8 9] 8

T

& @ O
(radient

|

8 ® 8)

Where is next edge point?

we construct the tangent to the edge curve (which is normal to the
gradient at that point) and use this to predict the next points

8 9] 8

T

& @ O
(radient

|

8 ® 8)

Edge Linking: Hysteresis
* Check that maximum value of gradient
value Is sufficiently large

— drop-outs? use hysteresis

 use a high threshold to start edge curves and a low
threshold to continue them.

/E/\C\/f\/g:/}

Edge Linking: Hysteresis

* Check that maximum value of gradient
value Is sufficiently large

— drop-outs? use hysteresis

 use a high threshold to start edge curves and a low
threshold to continue them. threshold_high

0 0]0
1

T C

Edge Linking: Hysteresis

BE"H

i
~—

Edge Linking: Hysteresis

threshold_high threshold_low hysteresis
He"HE" HE"
0/ o|offo1 ofo/N o1 o0
1 1

—

Canny Edge Detection

1. Filter image by derivatives of
Gaussian

2. Compute magnitude of gradient
3. Compute edge orientation

4. Detect local maximum

5. Edge linking

Canny Edge Implementation

img = imread ('Lenna.png’);

img = rgb2gray(img);
img = double (img);

% Value for high and low thresholding
threshold _low = 0.035;
threshold _high = 0.175;

%% Gaussian filter definition (https://en.wikipedia.org/wiki/Canny edge detector)
G=1[2,4,5,4,2;4,9,12,9, 4,5, 12, 15, 12, 5;4,9, 12,9, 4,2, 4, 5, 4, 2];
G =1/159.* G;

%Filter for horizontal and vertical direction
dx =10 -1];
dy =[1; 0; -1];

Canny Edge Implementation

% % Convolution of image with Gaussian
Gx = conv2(G, dx, 'same");
Gy = conv2(G, dy, 'same’),

% Convolution of image with Gx and Gy
Ix = conv2(img, Gx, 'same");
ly = conv2(img, Gy, 'same);

Canny Edge Implementation

angle = atan2(ly, 1x); % Edge angle discretization into O, pi/4,
pi/2, 3*pi/4

%% Edge angle conditioning angle(angle>=0&angle<pi/8) = 0O;

angle(angle<0) = pi+angle(angle<0); angle(angle>=pi/8&angle<3*pi/8) = pi/4,

angle(angle>7*pi/8) = pi-angle(angle>7*pi/&ngle(angle>=3*pi/8&angle<5*pi/8) = pi/2;
angle(angle>=5*pi/8&angle<=7*pi/8) =
3*pi/4,

A I TN

i 1

=
]
o
% 3
=Y
S
=
L
w

angle

L .

R T]

Discretized

Canny Edge Implementation

%Calculate magnitude
magnitude = sqrt(IX.*Ix+1y.*ly); 1
LR oo
01 0

edge = zeros(nr, nc);

%% Non-Maximum Supression n

edge = non_maximum_suppression(magnitude, angle, edge);
gradient

edge = edge.*magnitude;

Gradient magnitude Localized edge

Canny Edge Implementation

%% Hysteresis thresholding

% for weak edge

threshold_low = threshold_low * max(edge(:));

% for strong edge

threshold_high = threshold_high * max(edge(:));

linked _edge = zeros(nr, nc);

linked _edge = hysteresis_thresholding(threshold_low, threshold_high, linked _edge, ed

threshold _high threshold _low

E nhysteresﬂ n

http://www.cfar.umd.edu/~fer/optical/index.html

The rows of black and white squares are all parallel.
The vertical zigzag patterns disrupt our horizontal perception.

Cornelia Fermiiller

Figure 1: Type 1 Edge

This edge can be represented by a function. The picture below shows the gray value
changes from black to white in the horizontal direction.

White E (f,____
_

Figure 2

Black

The edge is at the location of the inflection point on the curve, indicated by thc. black .
dot. If we were to smooth this image, it would look like this. C()rnella Fermuller

The edge is at the location of the inflection point on the curve, indicated by the black
dot. If we were to smooth this image, it would look like this.

White |

Black |

Figure 3

As you can see, smoothing the image does not change the location of the edge.

Cornelia Fermiiller

The second case is a line on a background of different intensity.

Figure 4: Type 2 Edge

This again can be represented as a function with two inflection points representing the
edges at the boundaries of the line and the background regions.

White |

Black |

Figure 5
Cornelia Fermiiller

When the image is smoothed the edges drift apart as shown.

white |

Black |

Figure 6

Cornelia Fermiiller

The third case is a gray line between a bright and a dark region.

Figure 7: Type 3 Edge

White

Black

Figure 8

When this image is smoothed the edges at the boundary of the line move toward each
other.

white

Black

Cornelia Fermiiller

If we smooth the image and then apply edge detection, we obtain edges as shown below.

Cornelia Fermiiller

http://www.cfar.umd.edu/~fer/optical/index.html

The rows of black and white squares are all parallel.
The vertical zigzag patterns disrupt our horizontal perception.

Figure 4

If we zoom in and look at the edges we notice that the added squares compensate for the
drifting of the lines. There is still “waviness™ to the edges, but it is too weak to be
perceived.

Is Edge Detection Solved?

— Edge detector — Human segmentation

Edge Formation Factors

Depth discontinuity ~ g

p P » Sy
. ol et .
- Pre #'W:' > 4
P el
R o »
e '7 2
} : p—— U
¥, »”
. R - Y. s
4 | " N B =
lllumination © NUItY
_— - —~ " .
" e . =
o 4 - S~ . 1% A
. W " I
- " ..
T J P = - :
\ X' .2 >
S5 .

Surface normal discontinuity

Image Pyramid, CIS581

Image Scale

Different scale of image encodes different edge response.

Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2¥x2* images (assuming N=2¥)

level k=1 pixel
|
level k-1]'L/
E
level k-2)E
L

level 0 (= onginal image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* In computer graphics, a mip map [Williams, 1983]
« A precursor to wavelet transform

Figure from David Forsyth

Image sub-sampling

Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling

Image sub-sampling

o

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Why does this look so bad?

Samnlinn

Good sampling:
«Sample often or,
«Sample wisely

Bad sampling:
«see aliasing in action!

Gaussian pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample
* Filter size should double for each %2 size reduction. Why?

Subsampling with Gaussian pre-

Gaussian 1/2

Solution: filter the image, then subsample

* Filter size should double for each % size reduction. Why?
» How can we speed this up?

Comparison

1/2 1/4 (2x zoom) 1/8 (4x zoom)

